Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal types of malignant tumors worldwide. Epitranscriptome, such as N -methyladenosine (m A) of mRNA, is an abundant post-transcriptional mRNA modification and has been recently implicated to play roles in several cancers, whereas the significance of m A modifications is virtually unknown in ESCC. Analysis of tissue microarray of the tumors in 177 ESCC patients showed that higher expression of m A demethylase ALKBH5 correlated with poor prognosis and that ALKBH5 was an independent prognostic factor of the survival of patients. There was no correlation between the other demethylase FTO and prognosis. siRNA knockdown of ALKBH5 but not FTO significantly suppressed proliferation and migration of human ESCC cells. ALKBH5 knockdown delayed progression of cell cycle and accumulated the cells to G0/G1 phase. Mechanistically, expression of CDKN1A (p21) was significantly up-regulated in ALKBH5-depleted cells, and m A modification and stability of CDKN1A mRNA were increased by ALKBH5 knockdown. Furthermore, depletion of ALKBH5 substantially suppressed tumor growth of ESCC cells subcutaneously transplanted in BALB/c nude mice. Collectively, we identify ALKBH5 as the first m A demethylase that accelerates cell cycle progression and promotes cell proliferation of ESCC cells, which is associated with poor prognosis of ESCC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.12792 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!