Synthesis of Ordered Pt Nanocube Arrays Directed by Block Copolymer Nanotemplate and Their Potential on Ethanol Oxidation Reaction.

Anal Chem

CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China, 510640.

Published: June 2020

AI Article Synopsis

  • This study focuses on the creation of well-ordered platinum nanocubes (Pt NCs) using a microemulsion process within a block copolymer (BC) nanotemplate, which acts as a microreactor.
  • By manipulating the concentration of HCl, researchers found that the shape of platinum nanoparticles (NPs) changes from quasi-spherical to nanocubes, influenced by the differences in adsorption energies of Cl and HCl as revealed by density functional theory (DFT) computations.
  • The Pt NCs exhibit improved electrochemical performance, showing a 2.8-fold increase in mass activity for ethanol oxidation compared to a commercial catalyst, alongside notable stability with only a 2.2% loss in electrochemical

Article Abstract

In this work, well-ordered platinum (Pt) nanocubes (NCs), with precise control on the size and the spatial arrangement, are synthesized from a microemulsion overgrowth in a block copolymer (BC) nanotemplate. The nanovials on this self-assembled BC template serve as microreactors for the reduction of the HCl/HPtCl precursor and direct the ordered periodic arrangement of the reduced Pt nanoparticles (NPs). As the content of HCl increases from 0% to 25%, the Pt NPs evolve from quasi-spheres to NCs, for which the density functional theory (DFT) computation reveals that the different adsorption energies of Cl and HCl dominate this morphology transition. For their potential application in fuel cells, the electrochemical catalysis of the Pt NCs demonstrates a 2.8-fold mass activity in contrast to the commercial JM 40% catalyst at the same Pt loading in ethanol oxidation reaction (EOR) and a good stability of 2.2% ECSA loss over 10 000 CV cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c01854DOI Listing

Publication Analysis

Top Keywords

block copolymer
8
copolymer nanotemplate
8
ethanol oxidation
8
oxidation reaction
8
synthesis ordered
4
ordered nanocube
4
nanocube arrays
4
arrays directed
4
directed block
4
nanotemplate potential
4

Similar Publications

In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization.

View Article and Find Full Text PDF

The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.

View Article and Find Full Text PDF

Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries.

View Article and Find Full Text PDF

Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: