Climate change induces multiple abiotic and biotic risks to forests and forestry. Risks in different spatial and temporal scales must be considered to ensure preconditions for sustainable multifunctional management of forests for different ecosystem services. For this purpose, the present review article summarizes the most recent findings on major abiotic and biotic risks to boreal forests in Finland under the current and changing climate, with the focus on windstorms, heavy snow loading, drought and forest fires and major insect pests and pathogens of trees. In general, the forest growth is projected to increase mainly in northern Finland. In the south, the growing conditions may become suboptimal, particularly for Norway spruce. Although the wind climate does not change remarkably, wind damage risk will increase especially in the south, because of the shortening of the soil frost period. The risk of snow damage is anticipated to increase in the north and decrease in the south. Increasing drought in summer will boost the risk of large-scale forest fires. Also, the warmer climate increases the risk of bark beetle outbreaks and the wood decay by Heterobasidion root rot in coniferous forests. The probability of detrimental cascading events, such as those caused by a large-scale wind damage followed by a widespread bark beetle outbreak, will increase remarkably in the future. Therefore, the simultaneous consideration of the biotic and abiotic risks is essential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383623PMC
http://dx.doi.org/10.1111/gcb.15183DOI Listing

Publication Analysis

Top Keywords

climate change
12
change induces
8
induces multiple
8
risks boreal
8
boreal forests
8
forests forestry
8
abiotic biotic
8
biotic risks
8
forest fires
8
wind damage
8

Similar Publications

Saving coral reefs: significance and biotechnological approaches for coral conservation.

Adv Biotechnol (Singap)

November 2024

Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage.

View Article and Find Full Text PDF

Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap)

October 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.

Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.

View Article and Find Full Text PDF

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Genetic structure of the northern house mosquito (Diptera: Culicidae) in a WNV-susceptible area.

J Hered

January 2025

Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile.

Mosquitoes from the Culex pipiens complex are found worldwide and have been the focus of numerous studies due to their role as vectors of human pathogens. We investigated the population genetic structure of Cx. pipiens s.

View Article and Find Full Text PDF

Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!