In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (g ) and leaf hydraulic conductance (K ). The C grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (S ) and adaxial stomatal density (SD ) which supported greater g . These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower K . Additionally, grasses with greater g and lower K also showed greater photosynthetic rates (A ) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C grasses to habitats with low MAP and may be useful to identify C species showing greater A and WUE in drier conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13807 | DOI Listing |
Sci Rep
December 2024
Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!