Precise regulation of chromosome segregation during oocyte meiosis is of vital importance to mammalian reproduction. Anaphase promoting complex/cyclosome (APC/C) is reported to play an important role in metaphase-to-anaphase transition. Here we report that cell division cycle 23 (Cdc23, also known as APC8) plays a critical role in regulating the oocyte chromosome separation. Cdc23 localized on the meiotic spindle, and microinjection of Cdc23 siRNA caused decreased ratios of metaphase-to-anaphase transition. Loss of Cdc23 resulted in abnormal spindles, misaligned chromosomes, errors of homologous chromosome segregation, and production of aneuploid oocytes. Further study showed that inactivation of spindle assembly checkpoint and degradation of Cyclin B1 and securin were disturbed after Cdc23 knockdown. Furthermore, we found that inhibiting spindle assembly checkpoint protein Msp1 partly rescued the decreased polar body extrusion and reduced the accumulation of securin in Cdc23 knockdown oocytes. Taken together, our data demonstrate that Cdc23 is required for the chromosome segregation through regulating the spindle assembly checkpoint activity, and cyclin B1 and securin degradation in meiotic mouse oocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202000131R | DOI Listing |
Alzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Alzheimer disease (AD) is a progressive dementia with high heritability. While genome-wide association studies have identified common variation associated with AD, most of these loci have effects too small to explain the segregation of disease within multiplex families. As such, these multiplex families likely harbor novel genetic variants with strong effects, and thus still play an important role in assessing the genetic etiology of AD.
View Article and Find Full Text PDFMol Biochem Parasitol
December 2024
University of Glasgow Centre for Parasitology, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom. Electronic address:
Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!