It is important to recover precious metals from secondary wastewater because of their low crustal abundance. The selective adsorption of palladium (Pd) and platinum (Pt) ions from secondary wastewater, which contains a large amount aluminium and sodium ions, was investigated using Escherichia coli BL21 (BL21), genetically modified E. coli BL21 (EC20) and Providencia vermicola (P. V.). The results demonstrated that P.V., BL21 and EC20 cells took 95.9%, 88.2% and 97.5% of Pd ions, and 64.8%, 93.2% and 100% of Pt ions form industrial wastewater, respectively. All three bacterial biomass could be reused for Pd adsorption with a second adsorption efficiency of > 85%, specifically, the EC20 cells could absorb 93.8% of Pd ions from wastewater. SEM-EDS and XPS analyses confirmed the occurrence of Pd and Pt on the surface of wastewater-absorbed biomass. The shift in FTIR spectrum implied that functional groups, such as hydroxyl, amino, carboxyl and phosphate groups, were involved in wastewater adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-020-02378-6 | DOI Listing |
Environ Toxicol Chem
January 2025
Aquatic Toxicology Laboratory, St Cloud State University, Minnesota, USA.
Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Programa de Pós-Graduação Em Saneamento, Meio Ambiente E Recursos Hídricos, Departamento de Engenharia Sanitária E Ambiental, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
GhEnToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium.
This study investigates the ecological risks posed by organic micropollutants (OMPs) in wastewater treatment plant (WWTP) effluents in Flanders, Belgium based on single-compound risk characterization. Utilizing a five-year monitoring dataset from the Flemish Environment Agency (VMM) and employing seven ecological threshold values (ETV) types, this research characterizes the risk of 207 OMPs, including pharmaceuticals, pesticides, industrial chemicals, and other pollutants. Several OMPs persist in effluents at concentrations that pose significant ecological risks after secondary and tertiary treatment processes in the region of Flanders (Belgium).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India.
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.
View Article and Find Full Text PDFWater Res
January 2025
NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, Jinan 250021, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong, Jinan 250012, China; Shandong Engineering Research Center for Transdermal Drug Delivery Systems, Shandong, Jinan 250098, China. Electronic address:
Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!