Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Metabolic engineering frequently needs genomic integration of many heterologous genes for biosynthetic pathway assembly. Despite great progresses in genome editing for the model microorganism Escherichia coli, the integration of large pathway into genome for stabilized chemical production is still challenging compared with small DNA integration.
Results: We have developed a λ-Red assisted homology-dependent recombination for large synthetic pathway integration in E. coli. With this approach, we can integrate as large as 12 kb DNA module into the chromosome of E. coli W3110 in a single step. The efficiency of this method can reach 100%, thus markedly improve the integration efficiency and overcome the limitation of the integration size adopted the common method. Furthermore, the limiting step in the methylerythritol 4-phosphate (MEP) pathway and lycopene synthetic pathway were integrated into the W3110 genome using our system. Subsequently, the yields of the final strain were increased 106 and 4.4-fold compared to the initial strain and the reference strain, respectively.
Conclusions: In addition to pre-existing method, our system presents an optional strategy for avoiding using plasmids and a valuable tool for large synthetic pathway assembly in E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245811 | PMC |
http://dx.doi.org/10.1186/s12934-020-01360-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!