Background: Pirfenidone (PFD) is effective for pulmonary fibrosis (PF), but its action mechanism has not been fully explained. This study explored the signaling pathways involved in anti-fibrosis role of PFD, thus laying a foundation for clinical application.
Methods: Pulmonary fibrosis mice models were constructed by bleomycin (BLM), and TGF-β1 was used to treat human fetal lung fibroblasts (HLFs). Then, PFD was added into treated mice and cells alone or in combination with β-catenin vector. The pathological changes, inflammatory factors levels, and Collagen I levels in mice lung tissues were assessed, as well as the activity of HLFs was measured. Levels of indices related to extracellular matrix, epithelial-mesenchymal transition (EMT), Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways were determined in tissues or cells.
Results: After treatment with BLM, the inflammatory reaction and extracellular matrix deposition in mice lung tissues were serious, which were alleviated by PFD and aggravated by the addition of β-catenin. In HLFs, PFD reduced the activity of HLFs induced by TGF-β1, inhibited levels of vimentin and N-cadherin and promoted levels of E-cadherin, whereas β-catenin produced the opposite effects to PFD. In both tissues and cells, Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways were activated, which could be suppressed by PFD.
Conclusions: PFD alleviated pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways, which might further improve the action mechanism of anti-fibrosis effect of PFD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245944 | PMC |
http://dx.doi.org/10.1186/s10020-020-00173-3 | DOI Listing |
Mol Pharm
January 2025
State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei General Hospital, Shijiazhuang City, Hebei Province, P.R. China.
Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.
Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.
PLoS One
January 2025
Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America.
Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!