Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor.

J Biomol Struct Dyn

Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, India.

Published: July 2021

The novel corona virus disease 2019 (SARS-CoV 2) pandemic outbreak was alarming. The binding of SARS-CoV (CoV) spike protein (S-Protein) Receptor Binding Domain (RBD) to Angiotensin converting enzyme 2 (ACE2) receptor initiates the entry of corona virus into the host cells leading to the infection. However, considering the mutations reported in the SARS-CoV 2 (nCoV), the structural changes and the binding interactions of the S-protein RBD of nCoV were not clear. The present study was designed to elucidate the structural changes, hot spot binding residues and their interactions between the nCoV S-protein RBD and ACE2 receptor through computational approaches. Based on the sequence alignment, a total of 58 residues were found mutated in nCoV S-protein RBD. These mutations led to the structural changes in the nCoV S-protein RBD 3d structure with 4 helices, 10 sheets and intermittent loops. The nCoV RBD was found binding to ACE2 receptor with 11 hydrogen bonds and 1 salt bridge. The major hot spot amino acids involved in the binding identified by interaction analysis after simulations includes Glu 35, Tyr 83, Asp 38, Lys 31, Glu 37, His 34 amino acid residues of ACE2 receptor and Gln 493, Gln 498, Asn 487, Tyr 505 and Lys 417 residues in nCoV S-protein RBD. Based on the hydrogen bonding, RMSD and RMSF, total and potential energies, the nCoV was found binding to ACE2 receptor with higher stability and rigidity. Concluding, the hotspots information will be useful in designing blockers for the nCoV spike protein RBD. [Formula: see text]Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284149PMC
http://dx.doi.org/10.1080/07391102.2020.1773318DOI Listing

Publication Analysis

Top Keywords

ace2 receptor
24
s-protein rbd
20
ncov s-protein
16
structural changes
12
ncov
9
residues interactions
8
corona virus
8
spike protein
8
rbd
8
hot spot
8

Similar Publications

The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition.

View Article and Find Full Text PDF

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.

View Article and Find Full Text PDF

A class of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives were synthesized under environmentally friendly conditions using water as the solvent. The 3-D structures of some synthesized compounds were determined by X-ray diffraction. Since naturally occurring isoquinoline alkaloids have significant antiviral activities against a wide range of viruses, including coronaviruses, the synthesized compounds were assayed for their inhibitory activities against SARS-CoV-2.

View Article and Find Full Text PDF

Rapid luminescence-based screening method for SARS- CoV-2 inhibitors discovery.

SLAS Discov

January 2025

Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way. Nutley, New Jersey 07110, United States. Electronic address:

The COVID-19 pandemic has emphasized the necessity for rapid and adaptable drug screening platforms against live pathogenic viruses that require high levels of biosafety containment. Conventional antiviral testing is time-consuming and labor-intensive. Here, we outline the design and validation of a semi-automated drug-screening platform for SARS-CoV-2 that utilizes multiple liquid handlers, a stable A549 cell line expressing ACE2 and TMPRSS2 receptors, and a recombinant SARS-CoV-2 strain harboring the nano-luciferase gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!