This research examines changes to the functional (solubility, emulsifying and foaming) properties of pea protein isolate when complexed with commercial citrus pectin of different structural attributes. Specifically, a high methoxy (P90; degree of esterification: 90.0%; degree of blockiness: 64.5%; galacturonic acid content 11.4%) and low methoxy (P29; degree of esterification: 28.6%; degree of blockiness: 31.1%; galacturonic acid: 70%) pectin at their optimum mixing ratios with pea protein isolate (4:1 pea protein isolate to P90; 10:1 pea protein isolate to P29) were assessed at the pHs associated with critical structure forming events during the complexation process (soluble complexation (pH), pH 6.7 and 6.1; insoluble complex formation (pH), pH 4.0 and 5.0; maximum complexation (pH), pH 3.5 and 3.8; dissolution of complexes, pH 2.4 and 2.1; for admixtures of pea protein isolate-P90 and pea protein isolate-P29, respectively). Pea protein isolate solubility was improved from 41 to 73% by the presence of P90 at pH 6.0 and was also moderately increased at pH 4.0 and pH 5.0 by P90 and P29, respectively. The emulsion stability of both pea protein isolate-pectin complexes was higher than the homogeneous pea protein isolate at all critical pHs except pH as well as pH for pea protein isolate-P29 only. P90, with the higher level blockiness and esterification, displayed better foaming properties at the maximal complexation pH when complexed with pea protein isolate than pea protein isolate-P29 or pea protein isolate alone. However at pH, pea protein isolate-P29 admixtures produced foams with 100% stability, increasing pea protein isolate foam stability by 85%. The enhanced functionality of pea protein isolate-pectin complexes based on the type of pectin used at critical pHs indicates they may be useful biopolymer ingredients in plant protein applications.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1082013220924888DOI Listing

Publication Analysis

Top Keywords

pea protein
68
protein isolate
36
protein
18
pea
17
protein isolate-p29
16
protein isolate-pectin
12
isolate-pectin complexes
12
isolate pea
12
isolate
9
foaming properties
8

Similar Publications

Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.

View Article and Find Full Text PDF

High-throughput precision assessment of pea-derived protein products using near infrared hyperspectral imaging.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Bioresource Engineering, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.

This study aims to develop rapid and non-invasive methods based on near-infrared hyperspectral imaging and chemometrics for quantitative prediction of chemical compositions of pea-derived products. Hyperspectral imaging was used to acquire images from pea processing streams, namely pea flour, pea protein concentrate, and pea protein isolate. The PLS algorithm was used to develop quantitative prediction models based on the relationship between the hyperspectral image data and the chemical compositions of the pea products, including moisture, protein, ash, insoluble fiber, and total starch.

View Article and Find Full Text PDF

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!