By taking advantage of the efficient Förster resonance energy transfer (FRET) between near-infrared (NIR)-responsive lanthanide-doped upconversion nanoparticles (UCNPs) and Fenton reagent ferrocenyl compounds (), a series of -UCNPs was designed by functionalizing NaYF:Yb,Tm nanoparticles with - surface-coordination chemistry. -UCNP-Lipo nanosystems were then constructed by encapsulating -UCNP inside liposomes for efficient delivery. -UCNP can effectively release ·OH a NIR-promoted Fenton-like reaction. and studies of -UCNP-Lipo confirmed the preferential accumulation in a tumor site followed by an enhanced uptake of cancer cells. After cellular internalization, the released -UCNP can effectively promote ·OH generation for tumor growth suppression. Such a -UCNP-Lipo nanosystem exhibits advantages such as easy fabrication, low drug dosage, and no ferrous ion release.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c01073DOI Listing

Publication Analysis

Top Keywords

fenton-like reaction
8
tumor growth
8
growth suppression
8
-ucnp effectively
8
ferrocene functionalized
4
functionalized upconversion
4
upconversion nanoparticle
4
nanoparticle nanosystem
4
nanosystem efficient
4
efficient near-infrared-light-promoted
4

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.

View Article and Find Full Text PDF

As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL).

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!