PHYTOCHROME INTERACTING FACTORs in the moss Physcomitrella patens regulate light-controlled gene expression.

Physiol Plant

Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany.

Published: July 2020

Phytochromes are red and far-red light receptors in plants that control growth and development in response to changes in the environment. Light-activated phytochromes enter the nucleus and act on a set of downstream signalling components to regulate gene expression. PHYTOCHROME INTERACTING FACTORs (PIFs) belong to the basic helix-loop-helix family of transcription factors and directly bind to light-activated phytochromes. Potential homologues of PIFs have been identified in ferns, bryophytes and streptophyte algae, and it has been shown that the potential PIF homologues from Physcomitrella patens, PIF1 to PIF4, have PIF function when expressed in Arabidopsis. However, their function in Physcomitrella is still unknown. Seed plant PIFs bind to G-box-containing promoters and, therefore, we searched the Physcomitrella genome for genes that contain G-boxes in their promoter. Here, we show that Physcomitrella PIFs activate these promoters in a G-box-dependent manner, suggesting that they could be direct PIF targets. Furthermore, we generated Physcomitrella pif1, pif2, pif3 and pif4 knock out mutant lines and quantified the expression of potential PIF direct target genes. The expression of these genes was generally reduced in pif mutants compared to the wildtype, but for several genes, the relative induction upon a short light treatment was higher in pif mutants than the wildtype. In contrast, expression of these genes was strongly repressed in continuous light, and pif mutants showed partial downregulation of these genes in the dark. Thus, the overall function of PIFs in light-regulated gene expression might be an ancient property of PIFs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13140DOI Listing

Publication Analysis

Top Keywords

gene expression
12
pif mutants
12
phytochrome interacting
8
interacting factors
8
physcomitrella patens
8
light-activated phytochromes
8
potential pif
8
expression genes
8
pif
7
physcomitrella
6

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!