In present study the effect of iron (Fe) and manganese (Mn) contamination was assessed by modeling a freshwater food web of water, zooplankton (Daphnia pulex), and zebrafish (Danio rerio) under laboratory conditions. Metals were added to the rearing media of D. pulex, and enriched zooplankton was fed to zebrafish in a feeding trial. The elemental analysis of rearing water, zooplankton, and fish revealed significant difference in the treatments compared to the control. In D. pulex the Mn level increased almost in parallel with the dose of supplementation, as well as the Fe level differed statistically. A negative influence of the supplementation on the fish growth was observed: specific growth rate (SGR%) and weight gain (WG) decreased in Fe and Mn containing treatments. The redundancy analysis (RDA) of concentration data showed strong correlation between the rearing water and D. pulex, as well as the prey organism of Fe- and Mn-enriched D. pulex and the predator organism of D. rerio. The bioconcentration factors (BCF) calculated for water to zooplankton further proved the relationship between the Fe and Mn dosage applied in the treatments and measured in D. pulex. Trophic transfer factor (TTF) results also indicate that significant retention of the metals occurred in D. rerio individuals, however, in a much lower extent than in the water to zooplankton stage. Our study suggests that Fe and Mn significantly accumulate in the lower part of the trophic chain and retention is effective through the digestive track of zebrafish, yet no biomagnification occurs. Graphical abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746567PMC
http://dx.doi.org/10.1007/s12011-020-02190-zDOI Listing

Publication Analysis

Top Keywords

water zooplankton
16
iron manganese
8
zebrafish danio
8
danio rerio
8
zooplankton daphnia
8
rearing water
8
zooplankton
6
pulex
6
water
5
manganese retention
4

Similar Publications

[Investigating jellyfish diet with DNA macrobarcoding: A case study in ].

Ying Yong Sheng Tai Xue Bao

October 2024

Liaoning Ocean and Fisheries Science Research Institute/Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs/Key Laboratory of Molecular Biology for Marine Fishery, Dalian 116023, Liaoning, China.

We investigated food composition and feeding selectivity of jellyfish () from the coastal aquaculture ponds in Liaodong Bay by DNA metabarcoding technology. The DNA from environmental water samples and stomach contents of were extracted and sequenced by high-throughput sequencing with 18S rDNA V4 region and mitochondrial cytochrome c oxidase subunit I (COI) as metabarcoding markers. Based on 18S rDNA metabarcoding, we detected 27 phyla in the stomach contents of , in which Mollusc was the dominant phylum followed by Arthropod, and 34 phyla in the environmental water samples, in which Pyrrophyta was the dominant phylum followed by Ciliophora and Ascomycota.

View Article and Find Full Text PDF

Insights from a year of field deployments inform the conservation of an endangered estuarine fish.

Conserv Physiol

December 2024

U.S. Bureau of Reclamation Bay-Delta Office, 801 I St., Suite 140, Sacramento, CA 95814, USA.

Freshwater fishes are increasingly facing extinction. Some species will require conservation intervention such as habitat restoration and/or population supplementation through mass-release of hatchery fish. In California, USA, a number of conservation strategies are underway to increase abundance of the endangered Delta Smelt (); however, it is unclear how different estuarine conditions influence hatchery fish.

View Article and Find Full Text PDF

Distributions of DMS and DMSP and the influences of planktonic community assemblages in the Bohai Sea and Yellow Sea.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) are important sulfur compounds influenced by community assemblages of plankton. The distributions of DMS, DMSP, DMSP lyase activity (DLA), DMSP-consuming bacteria (DCB), and community structures of phytoplankton and zooplankton were investigated during summer in the Bohai Sea and Yellow Sea. The variety ranges of DMS, dissolved DMSP (DMSP), and particulate DMSP (DMSP) concentrations in the surface seawater were 1.

View Article and Find Full Text PDF

Spatial distribution of bacteria in response to phytoplankton community and multiple environmental factors in surface waters in Sanggou Bay.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laoshan Laboratory, Qingdao, 266237, China.

Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities.

View Article and Find Full Text PDF

Increased pharmaceutical usage has led to their widespread presence in aquatic environments, resulting in concerns regarding their potential environmental impacts. Antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs) like citalopram, are frequently detected in European surface waters. Acute laboratory studies have demonstrated that citalopram can inhibit algal growth, immobilise Daphnia magna, and may result in foot detachment (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!