Recent dramatic declines in global malaria burden and mortality can be largely attributed to the large-scale deployment of insecticidal-based measures, namely long-lasting insecticidal nets (LLINs) and indoor residual spraying. However, the sustainability of these gains, and the feasibility of global malaria eradication by 2040, may be affected by increasing insecticide resistance among the Anopheles malaria vector. We employ a new differential-equations based mathematical model, which incorporates the full, weather-dependent mosquito lifecycle, to assess the population-level impact of the large-scale use of LLINs, under different levels of Anopheles pyrethroid insecticide resistance, on malaria transmission dynamics and control in a community. Moreover, we describe the bednet-mosquito interaction using parameters that can be estimated from the large experimental hut trial literature under varying levels of effective pyrethroid resistance. An expression for the basic reproduction number, [Formula: see text], as a function of population-level bednet coverage, is derived. It is shown, owing to the phenomenon of backward bifurcation, that [Formula: see text] must be pushed appreciably below 1 to eliminate malaria in endemic areas, potentially complicating eradication efforts. Numerical simulations of the model suggest that, when the baseline [Formula: see text] is high (corresponding roughly to holoendemic malaria), very high bednet coverage with highly effective nets is necessary to approach conditions for malaria elimination. Further, while >50% bednet coverage is likely sufficient to strongly control or eliminate malaria from areas with a mesoendemic malaria baseline, pyrethroid resistance could undermine control and elimination efforts even in this setting. Our simulations show that pyrethroid resistance in mosquitoes appreciably reduces bednet effectiveness across parameter space. This modeling study also suggests that increasing pre-bloodmeal deterrence of mosquitoes (deterring them from entry into protected homes) actually hampers elimination efforts, as it may focus mosquito biting onto a smaller unprotected host subpopulation. Finally, we observe that temperature affects malaria potential independently of bednet coverage and pyrethroid-resistance levels, with both climate change and pyrethroid resistance posing future threats to malaria control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-020-01503-z | DOI Listing |
Parasit Vectors
December 2024
Institut de Recherche Biomédicale des Armées (IRBA), Unité de Parasitologie et Entomologie, Marseille, France.
Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin.
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of s.l.
View Article and Find Full Text PDFMethods Protoc
December 2024
General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.
is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol Direct reagent, PrepMan Ultra Sample Preparation Reagent (USPR), and Chelex 100-to identify an optimal method to extract DNA from individual , as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR.
View Article and Find Full Text PDFLancet
December 2024
Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
Background: Spatial repellent products are used for prevention of insect bites, and a body of evidence exists on spatial repellent entomological efficacy. A new option for vector control, spatial repellent products are designed to release active ingredient into the air for disruption of human-vector contact thereby reducing human exposure to mosquito-borne pathogens. Clinical trials have shown spatial repellent epidemiological efficacy against Aedes-borne viruses but inconclusive outcomes against malaria.
View Article and Find Full Text PDFMalar J
December 2024
Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania.
Background: Effective vector control interventions, notably insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are indispensable for malaria control in Tanzania and elsewhere. However, the emergence of widespread insecticide resistance threatens the efficacy of these interventions. Monitoring of insecticide resistance is, therefore, critical for the selection and assessment of the programmatic impact of insecticide-based interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!