Fibronectin induces capacitation-associated events through the endocannabinoid system in bull sperm.

Theriogenology

Laboratorio de Biología de la Reproducción en Mamíferos (CEFYBO-CONICET/UBA)- Buenos Aires, Argentina. Electronic address:

Published: September 2020

Mammalian ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, collectively called capacitation, in order to fertilize the oocyte. We reported that fibronectin (Fn), a glycoprotein from the extracellular matrix, and anandamide (AEA), one of the major members of the endocannabinoid family, are present in the bovine oviductal fluid and regulate bull sperm function. Also, AEA induces bovine sperm capacitation, through CB1 and TRPV1 receptors. In this work, we investigated if Fn induces bovine sperm capacitation thought the activation of the endocannabinoid system in this process. We incubated sperm with Fn (100 μg/ml) and/or capsazepine, a TRPV1 antagonist (0.1 μM) and some events related to sperm capacitation such as LPC-induced acrosome reaction, sperm-release from the oviduct, induction of PKA phosphorylated substrates (pPKAs) and protein tyrosine phosphorylation (pY) and nitric oxide (NO) production were assessed. Also, we studied the activity of fatty acid amide hydrolase (FAAH), the enzyme that degrades AEA. We found that Fn, via α5β1 integrin, induced capacitation-associated events. Also, Fn stimulated signaling pathways associated to capacitation as cAMP/PKA and NO/NO synthase. Moreover, Fn decreased the FAAH activity and this correlated with sperm capacitation. Capsazepine reversed fibronectin-induced capacitation, and pPKAs and NO levels. The incubation of spermatozoa with R-methanandamide (1.4 nM), a stable analogue of AEA, increased cAMP and pPKAs levels. The presence of H89 (50 μM) or KT5720 (100 nM) (PKA inhibitors) prevented AEA-induced capacitation. In addition, R-methanandamide and capsaicin (0.01 μM), a TRPV1 agonist, increased NO production via the PKA pathway. These results indicate that Fn, through α5β1, supports capacitation in bovine spermatozoa. This effect is dependent on the activation of TRPV1 through cAMP/PKA and NO signaling pathways. We propose that Fn could be considered as a new agent that promotes sperm capacitation in bull sperm. Our findings contribute to better understand the significance of Fn signaling in the capacitating events that lead to successful fertilization and embryo development in mammals including humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2020.04.031DOI Listing

Publication Analysis

Top Keywords

sperm capacitation
20
bull sperm
12
capacitation
10
sperm
9
capacitation-associated events
8
endocannabinoid system
8
induces bovine
8
bovine sperm
8
signaling pathways
8
ppkas levels
8

Similar Publications

The Effect of Cholesterol-Loaded Cyclodextrin and Resveratrol Compounds on Post-Thawing Quality of Ram Semen.

Vet Med Sci

January 2025

Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, Avcilar, İstanbul, Turkey.

Ram sperm are more vulnerable to freezing than those of most other farm animals. During sperm freezing, the cell membrane loses some of its cholesterol, which regulates signalling mechanisms and prevents premature capacitation. Resveratrol (RES) increases the fluidity of the cell membrane, which becomes peroxidized during freezing and reduces free radicals.

View Article and Find Full Text PDF

Decoding the Genes Orchestrating Egg and Sperm Fusion Reactions and Their Roles in Fertility.

Biomedicines

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.

Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion.

View Article and Find Full Text PDF

Reactive Oxygen Species (ROS) play an important role in sperm physiology. They are required in processes such as capacitation and fertilization. However, the exposure of spermatozoa to ROS generated from internal or external sources may create a potentially detrimental redox imbalance.

View Article and Find Full Text PDF

GM-CSF treatment of frozen bovine sperm improves function, fertilization, and subsequent embryo development.

Theriogenology

January 2025

Robinson Research Institute, The University of Adelaide, South Australia, Australia; Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia, Australia. Electronic address:

In vitro embryo production (IVP) is used in the cattle industry to increase the rate of genetic gain. IVP uses semen that has been frozen and thawed, a process that renders sperm less viable than sperm from fresh semen. Granulocyte macrophage colony stimulating factor (GM-CSF) is present in bovine seminal plasma, while its receptor is present on bovine sperm.

View Article and Find Full Text PDF

Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!