In situ growth of ZIF-67 on ultrathin CoAl layered double hydroxide nanosheets for electrochemical sensing toward naphthol isomers.

J Colloid Interface Sci

School of Environmental Science and Engineering, Collaborative Innovation Center for Marine Biomass Fiber, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, PR China.

Published: September 2020

Zeolitic imidazole frameworks (ZIF) and ultrathin layered double hydroxide nanosheets (LDHNS) have drawn growing attention in the electrocatalysis field. Combining the merits and maximizing the electrocatalytic activity of each building block in the corresponding composite is imperative but challenging. This work thus proposes a simple strategy for the in situ growth of ZIF-67 on ultrathin CoAl-LDHNS (LDHNS@ZIF-67) without an additional Co source. Thanks to the ultrathin nature, CoAl-LDHNS provide more Co reactive sites for the ordered growth of ZIF-67 nanocrystals on this 2D matrix via coordination interactions between Co and 2-methylimidazole. The obtained LDHNS@ZIF-67 provides more convenient pathways to rapid electron transportation between the basal electrode and analytes. Hence, the modified electrode can be applied for the truly simultaneous detection of naphthol isomers by differential pulse voltammetry. α-naphthol and β-naphthol exhibit irreversible oxidation peaks at 0.327 and 0.487 V vs. saturated calomel electrode, respectively, making their simultaneous detection feasible. The voltammetric responses of both isomers are linear in concentrations ranging from 0.3 to 150 μM with limits of detection of 62 and 94 nM, respectively. The sensor exhibits advantages including good reproducibility, stability, selectivity, and practicability for the simultaneous detection of naphthol isomers in real water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.05.042DOI Listing

Publication Analysis

Top Keywords

growth zif-67
12
naphthol isomers
12
simultaneous detection
12
situ growth
8
zif-67 ultrathin
8
layered double
8
double hydroxide
8
hydroxide nanosheets
8
detection naphthol
8
ultrathin
4

Similar Publications

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Growth of the metal-organic framework ZIF-67 on cellulosic substrates for triboelectric nanogenerators.

Nanoscale

December 2024

Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy Systems, Jeju National University, Jeju-si, Republic of Korea.

Metal-organic frameworks (MOFs) are porous crystalline materials with a metal ion coordinated to a ligand molecule. Recently, MOFs are being explored extensively for energy harvesting triboelectrification. However, the majority of MOFs are brittle and hard to grow, thus leading to poor device stability and flexibility.

View Article and Find Full Text PDF

Vacuum-Assisted Confined Growth of MOF@COF Composite Membranes with Enhanced Hydrogen Permselectivity.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500, Dongchuan Road, Shanghai, 200241, China.

Article Synopsis
  • Covalent organic frameworks (COFs) have potential for creating high-quality separation membranes but face challenges in gas separation due to larger pore sizes.
  • The study introduces a novel method by embedding the metal-organic framework (MOF) ZIF-8 within TB-COF to enhance gas separation properties.
  • The resulting ZIF-8@TB-COF membrane achieves significantly increased hydrogen selectivity for separating gas mixtures compared to traditional COF membranes, demonstrating the effectiveness of this new synthesis approach.
View Article and Find Full Text PDF

Nanosheet arrays derived from ZIF-67 grown on three-dimensional frameworks for the electrocatalytic oxygen evolution reaction.

Dalton Trans

December 2024

Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Article Synopsis
  • * Among the hydrogen production methods, water splitting is particularly notable, highlighting the need for effective and cost-efficient catalysts for the oxygen evolution reaction (OER).
  • * The study explores a novel electrocatalyst, ZIF-67/NiSe/NF, which displays impressive performance, achieving a low overpotential and demonstrating stability during extended OER tests, thanks to its unique structural properties and material synergy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!