Cancer metastasis is a major cause of death among women afflicted with breast cancer (BC) and understanding the molecular processes involved is a major focus in BC research. Circular RNAs (circRNAs) have emerged as genomic regulatory molecules in carcinogenesis and metastasis; however, their role in BC is unclear. We characterized a novel circRNA, hsa_circ_0000515, in context of BC. We collected 340 cancerous tissues surgically resected from BC patients and found hsa_circ_0000515 was upregulated in BC tissues and associated with poor prognosis of BC. Silencing of hsa_circ_0000515 impaired cell cycle progression, cell proliferation, and invasion, attenuated inflammatory response, and reduced the proangiogenetic potential of BC cells. RNA pull-down and dual-luciferase reporter gene assays showed that hsa_circ_0000515 binds miR-296-5p, preventing it from repressing CXCL10 expression. We also observed that miR-296-5p inhibition or CXCL10 overexpression promoted cell cycle progression, restored proliferative, invasive and proangiogenetic abilities, and increased inflammatory response in MCF-7 cells in the absence of hsa_circ_0000515. In vivo analyses showed that partial loss of hsa_circ_0000515 reduced the tumor growth of MCF-7 cells in nude mice. The key findings from this study revealed that targeting hsa_circ_0000515 might be an effective strategy to combat BC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15373DOI Listing

Publication Analysis

Top Keywords

hsa_circ_0000515
8
breast cancer
8
cell cycle
8
cycle progression
8
inflammatory response
8
mcf-7 cells
8
hsa_circ_0000515 novel
4
novel circular
4
circular rna
4
rna implicated
4

Similar Publications

Cancer metastasis is a major cause of death among women afflicted with breast cancer (BC) and understanding the molecular processes involved is a major focus in BC research. Circular RNAs (circRNAs) have emerged as genomic regulatory molecules in carcinogenesis and metastasis; however, their role in BC is unclear. We characterized a novel circRNA, hsa_circ_0000515, in context of BC.

View Article and Find Full Text PDF

This study investigates the role of circular RNA (circRNA) hsa_circ_0000515 in cervical cancer and the underlying mechanism associated with microRNA-326 (miR-326). hsa_circ_0000515 and ETS transcription factor ELK1 (ELK1) were initially over-expressed and miR-326 was down-regulated in cervical cancer tissues and cells. Low hsa_circ_0000515 expression was found to be associated with favorable prognosis of patients with cervical cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!