This study aimed to assess the harvesting of Spirulina platensis using coagulants and electrocoagulation-flotation (ECF) and to evaluate its influence on enzymatic hydrolysis. Using nine chemical coagulants, we obtained a biomass harvesting efficiency of up to 99.5%. Using ECF, the harvesting efficiency at the aluminum and carbon electrode was 98%-99% and 33.8%-86.9%, respectively. Hydrolysis efficiency (HE) with amylases varied from 17% to 42%, and the degree of hydrolysis (DH) with proteases varied from 1.26% to 4.07%, compared with an HE of 31% and a DH of 3.57% in the centrifuged biomass. Compared to an HE of 61.75% for the centrifuged biomass, and HE of 99% and 85.46% was obtained for the biomass harvested using the aluminum and carbon electrodes. The HEs with the electrodes were better than those with the alternative methods and centrifugation; hence, with some optimization, the biomass harvested could be used for enzymatic hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123526DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
12
harvesting spirulina
8
spirulina platensis
8
coagulants electrocoagulation-flotation
8
harvesting efficiency
8
aluminum carbon
8
centrifuged biomass
8
biomass harvested
8
biomass
6
hydrolysis
5

Similar Publications

Food allergens are defined by their stability during digestion, with allergenicity largely influenced by resistance to enzymatic hydrolysis. Ovalbumin (OVA), a major egg protein, is a significant contributor to food allergies, particularly in children. Our previous work demonstrated that high hydrostatic pressure (HHP) treatment reduces OVA allergenicity by disrupting conformational epitopes and altering its structure.

View Article and Find Full Text PDF

Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.

View Article and Find Full Text PDF

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Acyl glucuronide (AG) is a reactive metabolite that causes idiosyncratic drug toxicity (IDT). Although the instability of AG is used to predict the IDT risk of novel drug candidates, it sometimes overestimates the IDT risk. We investigated whether the rate of enzymatic AG hydrolysis in human liver microsomes (HLM) can predict the risk of IDT.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!