For the analysis of ultrasonic cavitation erosion on the surface of materials, the ultrasonic cavitation erosion experiments for AlCu4Mg1 and Ti6Al4V were carried out, and the changes of surface topography, surface roughness, and Vickers hardness were explored. Cavitation pits gradually expand and deepen with the increase of experiment time, and Ti6Al4V is more difficult to erode by cavitation than AlCu4Mg1. After experiments, the cavitation damage characteristics such as the single pit, the rainbow ring area, the fisheye pit, and some small pits were observed, which can be considered to be induced by a single micro-jet impact, ablation effect caused by the high temperature, micro-jet impingement with a sharp angle, and multibeam micro-jets coupling impact or negative pressure in the local area produced by micro-jet impact, respectively. The surface roughness and Vickers hardness of the material increase slowly after rapid growth at different points in time as the experiment time increases. With the increase of the ultrasonic amplitude, both of them first increase and then decrease after the ultrasonic amplitude is greater than 10.8 μm. The increases in surface roughness and Vickers hardness tend to decrease as the viscosity coefficient increases. Ultrasonic cavitation can cause submicron surface roughness and increase surface hardness by 20.36%, so it can be used as a surface treatment method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2020.105175 | DOI Listing |
Sci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.
The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Purpose: The purpose of this study was to characterize whether pulsed ultrasound (PUS) affects transscleral drug delivery.
Methods: Fluorescein sodium (NaF, 376 Da) and fluorescein isothiocyanate-conjugated dextran 40 (FD-40, 40 kDa) were used as model drugs. Human sclera grafts were placed in modified Franz diffusion cells and were treated by PUS (1 megahertz [MHz], 0.
Materials (Basel)
December 2024
Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timișoara, Romania.
This paper explores the enhancement of cavitation and corrosion resistance in cast stainless steel through laser beam surface remelting. The influence of laser treatment on material properties was assessed by analyzing the microstructure using optical microscopy, electron microscopy, and X-ray diffraction. Cavitation erosion was evaluated in tap water using an ultrasonic vibration setup, following ASTM G32-2016 standards.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Ataturk University, Engineering Faculty, Environmental Engineering Department, Erzurum 25240, TÜRKİYE. Electronic address:
Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!