The subcortical belly of sleep: New possibilities in neuromodulation of basal ganglia?

Sleep Med Rev

Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK. Electronic address:

Published: August 2020

Early studies posited a relationship between sleep and the basal ganglia, but this relationship has received little attention recently. It is timely to revisit this relationship, given new insights into the functional anatomy of the basal ganglia and the physiology of sleep, which has been made possible by modern techniques such as chemogenetic and optogenetic mapping of neural circuits in rodents and intracranial recording, functional imaging, and a better understanding of human sleep disorders. We discuss the functional anatomy of the basal ganglia, and review evidence implicating their role in sleep. Whilst these studies are in their infancy, we suggest that the basal ganglia may play an integral role in the sleep-wake cycle, specifically by contributing to a thalamo-cortical-basal ganglia oscillatory network in slow-wave sleep which facilitates neural plasticity, and an active state during REM sleep which enables the enactment of cognitive and emotional networks. A better understanding of sleep mechanisms may pave the way for more effective neuromodulation strategies for sleep and basal ganglia disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679363PMC
http://dx.doi.org/10.1016/j.smrv.2020.101317DOI Listing

Publication Analysis

Top Keywords

basal ganglia
20
sleep
9
sleep basal
8
functional anatomy
8
anatomy basal
8
better understanding
8
basal
6
ganglia
6
subcortical belly
4
belly sleep
4

Similar Publications

Aim: To explore the trajectories of consciousness recovery and prognosis-associated predictors in children with prolonged disorder of consciousness (pDoC).

Method: This single-centre, retrospective, observational cohort involved 134 (87 males, 47 females) children diagnosed with pDoC and hospitalized at the Department of Rehabilitation at the Children's Hospital of Chongqing Medical University in China. The median onset age was 30 (interquartile range [IQR] 18-54) months, with onset ages ranging from 3 to 164 months.

View Article and Find Full Text PDF

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Background: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!