The c-MYC is one of the most commonly discussed oncogenes in almost all cancers. c-MYC, as a proto-oncogene in normal cells, has found to be tightly controlled and regulated, both genetically and epigenetically. Evasion of the controlled checkpoint mechanisms during cancer causes a deregulated expression of c-MYC. Overexpression of c-MYC causes the onset of many hallmarks of cancer. Despite c-MYC being centrally located in several cancers, it is not feasible to target c-MYC in therapeutic resistant cancers. Similarly, long non-coding RNAs (lncRNAs) are deregulated during the genesis and progression of different cancers. LncRNAs contribute to almost 27% human genome and recent findings by tumor genome sequencing revealed many of the lncRNAs loci that are modified, deleted, amplified, and mutated during the different stages of cancer development. Recent studies also reported that multiple lncRNAs regulate c-MYC by different mechanisms and vice versa. Thus, oncogenic lncRNAs and c-MYC interaction are positioned to provide an interesting choice for therapeutic interventions in cancers. In this mini-review, we summarize the recent discoveries and explain how the interaction between oncogenic lncRNAs and c-MYC could be used as a possible target for therapeutic intervention in cancers, especially the therapeutic resistant metastatic cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2020.115056 | DOI Listing |
Plants (Basel)
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.
View Article and Find Full Text PDFLife (Basel)
January 2025
Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
The scorpion Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Service d'Anatomie Pathologique, Institut Mutualiste Montsouris, 42 Bd Jourdan, 75014 Paris, France.
Abdominal wall endometriosis (AWE) is a clinical disorder with unknown pathogenesis with an incidence between 0.03% and 1% in women affected by cutaneous/scar endometriosis. We investigated the pathological, molecular cytogenetic and cell proliferation features of a primary AWE developed in rectus abdominis muscle in a patient without co-existing pelvic endometriosis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA.
MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the expression of MYC, a transcription factor critical for the therapeutic response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!