Fluoxetine administration in juvenile overfed rats improves hypothalamic mitochondrial respiration and REDOX status and induces mitochondrial biogenesis transcriptional expression.

Eur J Pharmacol

Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil; Biochemistry and Physiology Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-UFPE, Academic Center of Vitória-CAV, Vitória de Santo Antão, Pernambuco, Brazil. Electronic address:

Published: August 2020

Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173200DOI Listing

Publication Analysis

Top Keywords

overfed rats
16
mitochondrial
15
mitochondrial biogenesis
12
flx administration
12
rats improves
8
mitochondrial respiration
8
nutritional imbalance
8
control energy
8
changes mitochondrial
8
mitochondrial function
8

Similar Publications

White adipose tissues and skeletal muscles as a target of chrysin during the treatment of obesity in rats.

Sci Rep

January 2025

Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.

Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.

View Article and Find Full Text PDF

Objective: The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders.

Methods: In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects.

View Article and Find Full Text PDF

Whole-body vibration (WBV) has gained attention as a light-resistance exercise and can increase energy metabolism. The rare sugar D-allulose has anti-obesity effects that are mediated by the suppression of hepatic lipogenesis. In this study, we examined the anti-obesity effects of a combination of WBV and dietary D-allulose in rats fed a high-fat diet.

View Article and Find Full Text PDF

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

This study aimed to investigate the effects of chronic sympathoinhibition on glucose uptake by the myocardium and by the skeletal muscle in an animal model of obesity associated with leptin signaling deficiency. 6 obese Zucker rats (OZR) and 6 control Lean Zucker rats (LZR) were studied during basal conditions, chronic clonidine administration (30 days, 300 µg/kg), and washout recovery period. Glucose uptake in the myocardium and in the skeletal muscle was measured using positron emission tomography (PET) and 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!