A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Application of Mass Spectroscopy Assays for Nε-(1-Carboxymethyl)-L-Lysine and Pentosidine in Renal Failure and Diabetes. | LitMetric

Background: Advanced glycation end products (AGEs) are formed via the nonenzymatic glycation of sugars with amino acids. Two AGEs, Nε-(1-carboxymethyl)-L-Lysine (CML) and pentosidine, have been observed to be elevated in subjects suffering from a multitude of chronic disease states, and accumulation of these compounds may be related to the pathophysiology of disease progression and aging.

Methods: We describe here the development and validation of a specific and reproducible LC-MS/MS method to quantify CML and pentosidine in human serum with lower limits of quantitation of 75 ng/mL and 5 ng/mL, respectively. The analyte calibration curve exhibited excellent linearity at a range of 0-10 900 ng/mL for CML and 0-800 ng/mL for pentosidine. High-low linearity of 5 serum pairs was assessed, with a mean recovery of 103% (range 94-116%) for CML, and 104% (range 97-116%) for pentosidine.

Results: Serum concentrations of CML and pentosidine were quantified in 30 control and 30 subjects with chronic renal insufficiency. A significant increase in both analytes was observed in renal failure compared to control subjects (2.1-fold and 8.4-fold, respectively; P < 0.001 for both). In a separate cohort of 49 control versus 95 subjects with type 2 diabetes mellitus (T2DM), serum CML but not serum pentosidine, was significantly elevated in the T2DM patients, and CML was also correlated with glycemic control, as assessed by hemoglobin A1c (r = 0.34, P < 0.001).

Conclusions: These mass spectroscopy-based assays for serum CML and pentosidine should be useful in accurately evaluating circulating levels of these key AGEs in various disease states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192546PMC
http://dx.doi.org/10.1093/jalm/jfaa023DOI Listing

Publication Analysis

Top Keywords

cml pentosidine
12
renal failure
8
control subjects
8
pentosidine
5
cml
5
development application
4
application mass
4
mass spectroscopy
4
spectroscopy assays
4
assays nε-1-carboxymethyl-l-lysine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!