Accurate estimation of reference evapotranspiration (ET) is profoundly crucial in crop modeling, sustainable management, hydrological water simulation, and irrigation scheduling, since it accounts for more than two-thirds of global precipitation losses. Therefore, ET-based estimation is a major concern in the hydrological cycle. The estimation of ET can be determined using various methods, including field measurement (the scale of the lysimeter), experimental methods, and mathematical equations. The Food and Agriculture Organization recommended the Penman-Monteith (FAO-56 PM) method which was identified as the standard method of ET estimation. However, this equation requires a large number of measured climatic data (maximum and minimum air temperature, relative humidity, solar radiation, and wind speed) that are not always available on meteorological stations. Over the decade, the artificial intelligence (AI) models have received more attention for estimating ET on multi-time scales. This research explores the potential of new hybrid AI model, i.e., support vector regression (SVR) integrated with grey wolf optimizer (SVR-GWO) for estimating monthly ET at Algiers, Tlemcen, and Annaba stations located in the north of Algeria. Five climatic variables namely relative humidity (RH), maximum and minimum air temperatures (T and T), solar radiation (R), and wind speed (U) were used for model construction and evaluation. The proposed hybrid SVR-GWO model was compared against hybrid SVR-genetic algorithm (SVR-GA), SVR-particle swarm optimizer (SVR-PSO), conventional artificial neural network (ANN), and empirical (Turc, Ritchie, Thornthwaite, and three versions of Valiantzas methods) models by using root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (PCC), and Willmott index (WI), and through graphical interpretation. Through the results obtained, the performance of the SVR-GWO provides very promising and occasionally competitive results compared to other data-driven and empirical methods at study stations. Thus, the proposed SVR-GWO model with five climatic input variables outperformed the other models (RMSE = 0.0776/0.0613/0.0374 mm, NSE = 0.9953/ 0.9990/0.9995, PCC = 0.9978/0.9995/0.9998 and WI = 0.9988/0.9997/0.9999) for estimating ET at Algiers, Tlemcen, and Annaba stations, respectively. In conclusion, the results of this research indicate the suitability of the proposed hybrid artificial intelligence model (SVR-GWO) at the study stations. Besides, promising results encourage researchers to transfer and test these models in other locations in the world in future works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-08792-3 | DOI Listing |
J Med Internet Res
January 2025
Department High-Tech Business and Entrepreneurship Section, Industrial Engineering and Business Information Systems, University of Twente, Enschede, Overijssel, Netherlands.
Health recommender systems (HRS) have the capability to improve human-centered care and prevention by personalizing content, such as health interventions or health information. HRS, an emerging and developing field, can play a unique role in the digital health field as they can offer relevant recommendations, not only based on what users themselves prefer and may be receptive to, but also using data about wider spheres of influence over human behavior, including peers, families, communities, and societies. We identify and discuss how HRS could play a unique role in decreasing health inequities.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Institute for Health Care Management and Research, University of Duisburg-Essen, Essen, Germany.
Background: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, the majority of AI-based CDSS have not been adopted in standard care. Possible reasons for this include barriers in the implementation and a nonuser-oriented development approach, resulting in reduced user acceptance.
View Article and Find Full Text PDFInteract J Med Res
January 2025
Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Incorporating artificial intelligence (AI) into medical education has gained significant attention for its potential to enhance teaching and learning outcomes. However, it lacks a comprehensive study depicting the academic performance and status of AI in the medical education domain.
Objective: This study aims to analyze the social patterns, productive contributors, knowledge structure, and clusters since the 21st century.
J Med Internet Res
January 2025
Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.
Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!