The study of epigenetics has its roots in the study of organism change over time and response to environmental change, although over the past several decades the definition has been formalized to include heritable alterations in gene expression that are not a result of alterations in underlying DNA sequence. In this chapter, we discuss first the history and milestones in the 100+ years of epigenetic study, including early discoveries of DNA methylation, histone posttranslational modification, and noncoding RNA. We then discuss how epigenetics has changed the way that we think of both health and disease, offering as examples studies examining the epigenetic contributions to aging, including the recent development of an epigenetic "clock", and explore how antiaging therapies may work through epigenetic modifications. We then discuss a nonpathogenic role for epigenetics in the clinic: epigenetic biomarkers. We conclude by offering two examples of modern state-of-the-art integrated multi-omics studies of epigenetics in disease pathogenesis, one which sought to capture shared mechanisms among multiple diseases, and another which used epigenetic big data to better understand the pathogenesis of a single tissue from one disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-15-3449-2_2 | DOI Listing |
Turk Neurosurg
March 2024
SBÜ Gaziosmanpaşa Eğitim ve Araştırma Hastanesi.
Erdheim-Chester Disease is a rare systemic xanthogranulomatous infiltrating disease, characterized by lipid-laden histiocytes accumulating in various organs and almost always in bones. Etiology of the disease is still unknown. It may involve various organs and systems, such as musculoskeletal, cardiac, pulmonary, renal, gastrointestinal and central nervous system (CNS) as well as the skin.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).
View Article and Find Full Text PDFTurk Patoloji Derg
January 2025
Department of Pathology, Post Graduate Institute of Child Health, NOIDA, INDIA.
Objective: To study and correlate the clinicopathological findings of Solitary Rectal Ulcer Syndrome (SRUS) in 10 pediatric patients.
Material And Methods: This study is a retrospective study of patients from January 2017 to June 2024. The clinical records were reviewed for details of the clinical presentation, colonoscopic findings, associated local and systemic diseases, and other investigations.
Adv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFSmall
January 2025
Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.
Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!