Objectives: Kidney renal clear cell carcinoma (KIRC) is one of the most common lethal cancers in the human urogenital system. As members of the Homeobox (HOX) family, Homeobox-A (HOXA) cluster genes have been reported to be involved in the development of many cancer types. However, the expression and clinical significance of HOXA genes in KIRC remain largely unknown.

Materials And Methods: In this study, we comprehensively analyzed the mRNA expression and prognostic values of HOXA genes in KIRC using The Cancer Genome Atlas (TCGA) analysis databases online. Colony formation assay, flow cytometry and Western blot were used to detect cell proliferation, apoptosis, cell cycle, and protein level of the indicated gene.

Results: We found that the HOXA genes were differentially expressed in KIRC tissues when compared with normal tissues. The expression of HOXA4 and HOXA13 were significantly up-regulated, while HOXA7 and HOXA11 were down-regulated in KIRC. High mRNA levels of HOXA2, HOXA3 and HOXA13, and low level of HOXA7 predicted poor overall survival (OS) of KIRC patients. High mRNA level of HOXA13 further indicated a poor disease-free survival (DFS) of KIRC patients. Functionally, knockdown of HOXA13 significantly suppressed cell proliferation of KIRC in vitro, increased the protein level of p53 and decreased the protein level of cyclin D1 in KIRC cells. Over-expression of HOXA13 had the opposite effects on KIRC cells.

Conclusion: Collectively, our findings suggest that HOXA13 functions as a novel oncogene in KIRC and may be a potential biomarker for this malignancy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-020-03259-xDOI Listing

Publication Analysis

Top Keywords

hoxa genes
12
protein level
12
kirc
11
kidney renal
8
renal clear
8
clear cell
8
cell carcinoma
8
genes kirc
8
cell proliferation
8
high mrna
8

Similar Publications

Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.

View Article and Find Full Text PDF

Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the development and progression of cancer. In the present study, we aimed to identify lncRNAs associated with lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC). We analyzed data from The Cancer Genome Atlas (TCGA) database to screen for genes overexpressed in primary PDAC tumors with lymph node metastasis.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by impaired differentiation of myeloid cells leading to hematopoietic failure. Despite advances, the molecular mechanisms driving AML remain incompletely understood, limiting the identification and targeting of critical vulnerabilities in leukemic cells. Homeobox (HOX) genes, encoding transcription factors essential for myeloid and lymphoid differentiation, are distributed across four clusters: HOXA (chromosome 7), HOXB (chromosome 17), HOXC (chromosome 12), and HOXD (chromosome 2).

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a serious blood cancer characterized by frequent relapses, partly due to disruptions in chromatin modifications that affect cell behavior.
  • Aberrant histone modifications lead to the activation of self-renewal genes in specific hematopoietic progenitor cells, which are crucial for the development of AML, particularly in cases with MLL rearrangements and NPM1 mutations.
  • New research highlights how leukemic cells exploit histone modification complexes as potential treatment targets, and the review suggests combining therapies that inhibit these complexes to improve effectiveness and tackle resistance to current treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!