Essential oils are potential antimicrobial agents and can be used as active ingredients in the pharmaceutical, food and cosmetics industries. This work intends to evaluate the antibacterial activity and design a strategy for the proposition of the mechanism of action of Melaleuca leucadendra essential oil. Optimum concentration of the bacteria and the phase where they had the highest pathogenic activity were determined. Results show that for each microorganism it is necessary to use a different concentration at the time of adjusting the initial inoculum, and that the time to achieve exponential growth phase varies from one to the other. M. leucadendra essential oil demonstrated in vitro antimicrobial properties. This oil was chemically characterized and the main compounds were evaluated by their mechanism of antibacterial action based on structure-activity analysis. The mechanism is related to the increase of bacteria cell membrane permeability. This indication was confirmed by flow cytometry and transmission electronic microscopy. Thus, in silico analysis is an important tool in the search for new antimicrobial agents and these results showed that M. leucadendra essential oil may be useful on the development of new chemotherapies or food preservation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-020-02024-0DOI Listing

Publication Analysis

Top Keywords

leucadendra essential
16
essential oil
16
melaleuca leucadendra
8
cell membrane
8
antimicrobial agents
8
essential
5
oil
5
oil promotes
4
promotes loss
4
loss cell
4

Similar Publications

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of cajuput oil obtained from fresh leaves of Maton & Sm. ex R. Powell and (L.

View Article and Find Full Text PDF

Larvicidal potential of plant-based extracts against dengue vector: A short review.

Med J Malaysia

March 2024

Universiti Teknologi MARA, Faculty of Health Sciences, Centre of Environmental Health and Safety Studies, Puncak Alam Campus, Selangor, Malaysia.

Introduction: Dengue fever, a vector borne disease transmitted primarily by Aedes albopictus and Aedes aegypti mosquitoes, has triggered a significant global resurgence. While many vector control programs depend on the use of chemical insecticides to curb outbreaks, its heavy reliance raises environmental concerns and the risk of insecticide resistance. Alternatively, botanically derived insecticidal agents with larvicidal properties offer an ecofriendlier option.

View Article and Find Full Text PDF

, and are three aromatic plants that have been reported to produce a high yield of volatile components with medicinal and therapeutic properties. This present study aimed to perform qualitative and semi-quantitative analysis on the volatile components present in the aforementioned aromatic plants. Essential oils from and were obtained from community-based enterprises in Aceh Province, Indonesia.

View Article and Find Full Text PDF

Aims: We investigated the antibacterial effect of seven essential oils (EOs) and one EO-containing liquid phytogenic solution marketed for poultry and pigs ('Product A') on chicken pathogens, as well as the relationship between minimum inhibitory concentration (MIC) in EOs and antibiotics commonly administered to chicken flocks in the Mekong Delta (Vietnam).

Methods And Results: Micellar extracts from oregano (Origanum vulgare), cajeput (Melaleuca leucadendra), garlic (Allium sativum), black pepper (Piper nigrum), peppermint (Mentha × piperita L.), tea tree (Melaleuca alternifolia), cinnamon (Cinnamomum zeylanicum) EOs and Product A were investigated for their MIC against Avibacterium endocarditidis (N = 10), Pasteurella multocida (N = 7), Ornitobacterium rhinotracheale (ORT) (N = 10), Escherichia coli (N = 10) and Gallibacterium anatis (N = 10).

View Article and Find Full Text PDF

Essential oils (EOs) are known for their use in cosmetics, food industries, and traditional medicine. This study presents the chemical composition and therapeutic properties against kinetoplastid and eukaryotic cells of the EO from (L.) L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!