Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many low-thermal-conductivity (κ) crystals show intriguing temperature (T) dependence of κ: κ ∝ T (crystal-like) at intermediate temperatures whereas weak T-dependence (glass-like) at high temperatures. It has been in debate whether thermal transport can still be described by phonons at the Ioffe-Regel limit. In this work, we propose that most phonons are still well defined for thermal transport, whereas they carry heat via dual channels: normal phonons described by the Boltzmann transport equation theory, and diffuson-like phonons described by the diffusion theory. Three physics-based criteria are incorporated into first-principles calculations to judge mode-by-mode between the two phonon channels. Case studies on LaZrO and TlVSe show that normal phonons dominate low temperatures while diffuson-like phonons dominate high temperatures. Our present dual-phonon theory enlightens the physics of hierarchical phonon transport as approaching the Ioffe-Regel limit and provides a numerical method that should be practically applicable to many materials with vibrational hierarchy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244571 | PMC |
http://dx.doi.org/10.1038/s41467-020-16371-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!