Purpose: Genomic methods can identify homologous recombination deficiency (HRD). Rigorous evaluation of their outcome association to DNA damage response-targeted therapies like platinum in pancreatic ductal adenocarcinoma (PDAC) is essential in maximizing therapeutic outcome.

Experimental Design: We evaluated progression-free survival (PFS) and overall survival (OS) of patients with advanced-stage PDAC, who had both germline- and somatic-targeted gene sequencing. Homologous recombination gene mutations (HRm) were evaluated: , and HRm status was grouped as: (i) germline versus somatic; (ii) core ( and versus non-core (other HRm); and (iii) monoallelic versus biallelic. Genomic instability was compared using large-scale state transition, signature 3, and tumor mutation burden.

Results: Among 262 patients, 50 (19%) had HRD (15% germline and 4% somatic). Both groups were analyzed together due to lack of difference in their genomic instability and outcome. Median [95% confidence interval (CI)] follow-up was 21.9 (1.4-57.0) months. Median OS and PFS were 15.5 (14.6-19) and 7 (6.1-8.1) months, respectively. Patients with HRD had improved PFS compared with no HRD when treated with first-line (1L) platinum [HR, 0.44 (95% CI: 0.29-0.67); < 0.01], but not with 1L-non-platinum. Multivariate analysis showed HRD patients had improved OS regardless of their first-line treatment, but most had platinum exposure during their course. Biallelic HRm (11%) and core HRm (12%) had higher genomic instability, which translated to improved PFS on first-line platinum (1L-platinum) versus 1L-non-platinum.

Conclusions: Pathogenic HRm identifies HRD in patients with PDAC with the best outcome when treated with 1L-platinum. Biallelic HRm and core HRm further enriched benefit from 1L-platinum from HRD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380542PMC
http://dx.doi.org/10.1158/1078-0432.CCR-20-0418DOI Listing

Publication Analysis

Top Keywords

homologous recombination
12
genomic instability
12
genomic methods
8
methods identify
8
identify homologous
8
recombination deficiency
8
hrm
8
improved pfs
8
first-line platinum
8
hrd patients
8

Similar Publications

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.

View Article and Find Full Text PDF

DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown.

View Article and Find Full Text PDF

Swine clones: potential application for animal production and animal models.

Anim Reprod

January 2025

Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP, Pirassununga, SP, Brasil.

Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!