Resveratrol: A Fair Race Towards Replacing Sulfites in Wines.

Molecules

Plant Biochemistry and Biotechnology Group, Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, GR 710 04 Heraklion, Greece.

Published: May 2020

In recent years, significant efforts to produce healthier wines has led to the replacement or reduction of the addition of sulfites, using alternative substances or techniques. Resveratrol and related biophenols seem to be of great interest, since beyond their protective nature and contrary to sulfites they can positively affect consumer health. These bioactive phytochemicals are naturally produced in grapes as evolutionary acquired mechanisms against pathogens and UV irradiation. However, despite the efforts made so far attempting to develop economic and industrially adopted isolation techniques, available quantities of these biophenols for commercial use are still quite limited. Therefore, such molecules are still not able to meet the needs of industrial use due to their prohibitive marketable cost. In this review we summarize the efforts that have been made to biosynthesize these molecules through alternative, innovative ways. Increasing interest in modern biotechnological approaches has shed light on the exploitation of metabolically engineered microbial factories, instead of plants, to produce molecules of industrial interest. Such approaches, also reviewed here, are expected to lower the cost and appear promising to produce enough surplus to attract further oenological experimentation upon yielding functional wines. This development is expected to attract further industrial attention, continuing the race to partially or totally replace the external addition of sulfites. We also review important physicochemical properties of resveratrol in relation to enriching wines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288175PMC
http://dx.doi.org/10.3390/molecules25102378DOI Listing

Publication Analysis

Top Keywords

addition sulfites
8
resveratrol fair
4
fair race
4
race replacing
4
sulfites
4
replacing sulfites
4
wines
4
sulfites wines
4
wines years
4
years efforts
4

Similar Publications

The majority of naturally occurring mutations of the human gene , are associated with reduced or completely absent xanthine oxidoreductase (XOR) activity, leading to a disease known as classical xanthinuria, which is due to the accumulation and excretion of xanthine in urine. Three types of classical xanthinuria have been identified: type I, characterised by XOR deficiency, type II, caused by XOR and aldehyde oxidase (AO) deficiency, and type III due to XOR, AO, and sulphite oxidase (SO) deficiency. Type I and II are considered rare autosomal recessive disorders, a condition where two copies of the mutated gene must be present to develop the disease or trait.

View Article and Find Full Text PDF

A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-cl, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-cl grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.

View Article and Find Full Text PDF

Essential role of sulfide oxidation in brain health and neurological disorders.

Pharmacol Ther

December 2024

Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Hydrogen sulfide (HS) is an environmental hazard well known for its neurotoxicity. In mammalian cells, HS is predominantly generated by transsulfuration pathway enzymes. In addition, HS produced by gut microbiome significantly contributes to the total sulfide burden in the body.

View Article and Find Full Text PDF

Do-Nothing Prebiotic Chemistry: Chemical Kinetics as a Window into Prebiotic Plausibility.

Acc Chem Res

January 2025

Astrophysics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

ConspectusOrigin of Life research is a fast growing field of study with each year bringing new breakthroughs. Recent discoveries include novel syntheses of life's building blocks, mechanisms of activation and interaction between molecules, and newly identified environments that provide promising conditions for these syntheses and mechanisms. Even with these new findings, firmly grounded in rigorous laboratory experiments, researchers often find themselves uncertain about how to apply them.

View Article and Find Full Text PDF

Background: Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder caused by pathogenic variants in the highly conserved biosynthetic pathway of molybdenum cofactor (MoCo), resulting in sulfite intoxication. MoCD may present in a clinically severe, fatal form marked by intractable seizures after birth, hyperekplexia, microcephaly and cerebral atrophy, or a later onset form with a more varied clinical course. Three types of MoCD have been described based on the effected gene along the MoCo synthesis pathway: type A (MOCS1); type B (MOCS2 or MOCS3) and type C (GPHN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!