In this study, two ester pro-drugs of dopamine (DA) were synthesized and evaluated. These derivatives were the monobenzoyl (MBDA) and dibenzoyl (DBDA) esters of DA. MBDA was 300-fold and DBDA was 20,000-fold more lipophilic than DA itself. The half-lives of hydrolysis for MBDA and DBDA at physiologic pH and temperature were 15 and 420 min respectively. These compounds were radiolabelled and their uptake into brain measured. 14C-DBDA penetrated the brain rapidly; 0.28% of the dose injected was taken up per gram of brain tissue at 5 min. However DBDA did not produce measurable increases in DA levels in the brain. 14C-MBDA was found not to penetrate the brain. However, when MBDA was administered intracerebroventricularly (i.c.v.) to rats, it caused DOPAC levels to increase significantly both in the striatum and in the rest of the brain. The increase in the amount of DOPAC measured in the striatum was 3 to 10-fold greater than that seen in the rest of the brain. In rats that were pretreated with the MAO inhibitor, pargyline, MBDA given i.c.v. caused increases in DA levels in both the striatum and in the rest of the brain. The increased DA levels in striatum were considerably greater than those seen in the rest of the brain. From these results, it is inferred that MBDA is being hydrolyzed in vivo in the brain to form DA which is then taken up into dopaminergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00179320DOI Listing

Publication Analysis

Top Keywords

rest brain
16
brain
10
pro-drugs dopamine
8
increases levels
8
striatum rest
8
greater rest
8
levels striatum
8
mbda
6
evaluation mono-
4
mono- dibenzoyl
4

Similar Publications

Comparing autonomic nervous system function in patients with functional somatic syndromes, stress-related syndromes and healthy controls.

J Psychosom Res

December 2024

REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Background: The goal of this study was to examine autonomic nervous system function by measuring heart rate (HR), heart rate variability (HRV), skin conductance levels (SCL), and peripheral skin temperature (ST) in response to and during recovery from psychosocial stressors in patients with functional somatic syndromes (FSS; fibromyalgia and/or chronic fatigue syndrome), stress-related syndromes (SRS; overstrain or burn-out), and healthy controls (HC).

Methods: Patients with FSS (n = 26), patients with SRS (n = 59), and HC (n = 30) went through a standardized psychosocial stress test consisting of a resting phase (120 s), the STROOP color word task (120 s), a mental arithmetic task (120 s) and a stress talk (120 s), each followed by a 120 s recovery period. HR, HRV, SCL, and ST were monitored continuously.

View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

This case report presents a complex medical scenario involving early 60s female patient with a history of chronic lymphocytic leukaemia (CLL) complicated by Evans syndrome, characterised by autoimmune haemolytic anaemia and immune thrombocytopenia. The patient had received various treatments, including steroids, rituximab, cyclosporine and acalabrutinib. The patient's neurological symptoms began around 3 years prior to presentation, with shaking of her right leg, followed by shaking of both hands, particularly the left hand.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.

Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.

View Article and Find Full Text PDF

Background: Up to 84% of patients with Alzheimer's Disease (AD) have vascular damage which precedes cognitive decline. Inflammation induces changes in blood-brain-barrier (BBB) integrity, though the link between induction of inflammation and AD is unclear. IL1β, a cytokine upregulated in patients with AD and in mouse models of the disease, is released and interacts with IL1R1 and its obligate co-receptor, IL1RAP, to induce downstream signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!