Children fitted with hearing aids (HAs) and children with attention deficit/hyperactivity disorder (ADHD) often have marked difficulties concentrating in noisy environments. However, little is known about the underlying neural mechanism of auditory and visual attention deficits in a direct comparison of both groups. The current functional near-infrared spectroscopy (fNIRS) study was the first to investigate the behavioral performance and neural activation during an auditory and a visual go/nogo paradigm in children fitted with bilateral HAs, children with ADHD and typically developing children (TDC). All children reacted faster, but less accurately, to visual than auditory stimuli, indicating a sensory-specific response inhibition efficiency. Independent of modality, children with ADHD and children with HAs reacted faster and tended to show more false alarms than TDC. On a neural level, however, children with ADHD showed supra-modal neural alterations, particularly in frontal regions. On the contrary, children with HAs exhibited modality-dependent alterations in the right temporopolar cortex. Higher activation was observed in the auditory than in the visual condition. Thus, while children with ADHD and children with HAs showed similar behavioral alterations, different neural mechanisms might underlie these behavioral changes. Future studies are warranted to confirm the current findings with larger samples. To this end, fNIRS provided a promising tool to differentiate the neural mechanisms underlying response inhibition deficits between groups and modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287647 | PMC |
http://dx.doi.org/10.3390/brainsci10050307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!