Pyrolytic valorization of water treatment residuals containing powdered activated carbon as multifunctional adsorbents.

Chemosphere

Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea. Electronic address:

Published: August 2020

This study investigated the possibility of applying pyrolysis as an alternative method to recycle powdered activated carbon-containing water treatment residuals (PAC-WTRs) discharged from the Cheongju water treatment plant as a multifunctional adsorbent. WTRs pyrolyzed for 1 h at 200-700 °C were compared with raw material. The carbon content of the PAC-WTR reaches 19.27%, with about 25% Al and 17% Si. Changes in PAC through pyrolysis imparted new adsorbent properties to WTR. As the pyrolysis temperature increased, the purity of PAC increased, and pores were regenerated to recover the Brunauer-Emmett-Teller (BET) from 6.5 m g to 131.8 m g. In addition, the basicity increased as the carboxylic and phenolic groups on the carbon surface were decomposed, which increased the cation (methylene blue) adsorption capacity and reduced heavy metal leaching. As the coagulant regenerated with increasing pyrolysis temperature, the amount of aluminum leached and phosphate removal efficiency were increased. In the case of simultaneous removal of cations (MB) and anions (PO), the removal efficiency was higher than that for single adsorption without competition through multi-layer adsorption by Al complex and PAC complex. Therefore, the pyrolyzed PAC-WTR is capable of adsorbing and removing anions and cations simultaneously without the peril of substance leaching. The regenerated WTRs containing PAC is expected to be utilized as a multi-functional remediation material for wastewater containing various pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.126641DOI Listing

Publication Analysis

Top Keywords

water treatment
12
treatment residuals
8
powdered activated
8
pyrolysis temperature
8
removal efficiency
8
increased
5
pyrolytic valorization
4
valorization water
4
residuals powdered
4
activated carbon
4

Similar Publications

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

High-temperature calcination modified red clay as an efficient adsorbent for phosphate removal from water.

Environ Res

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.

To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.

View Article and Find Full Text PDF

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant.

Chemosphere

December 2024

Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:

Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.

View Article and Find Full Text PDF

The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!