In this research, the toxicological effect of untreated wastewater from of ethyl alcohol industry was evaluated on the zebrafish (Danio rerio) under experimental conditions. Fish were treated with zero, half, one and two percent of sewage effluent for 21 days. Toxic effects were monitored in liver by determining biochemical indicators, oxidative stress biomarkers, and the expression of genes involved in the detoxification. Results showed that Sod1, Gstp-1a, Gpx1a gene expressions were significantly increased in the hepatocytes after 21 days at 2.0% sewage exposure. Sewage exposure also significantly increased Gsr, Ces2 and Cyp1a, Mt1 and Mt2 gene expression in the hepatocytes of zebrafish as compared to the reference group (P < 0.01). Total cellular antioxidants, malondialdehyde (MDA) levels, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities in fish exposed to 1 and 2% of sewage were significantly higher than the control group (P < 0.01), whereas alanine aminotransferase (ALT) was only increased in fish exposed to 2% sewage (P < 0.01). A significant decrease in gamma-glutamyl-transferase (GGT) activity in fish exposed to 2% effluent was found (P < 0.01). Catalase (CAT) activity was increased in zebrafish exposed to all concentrations of effluent. The transcriptional analysis of the detoxification-related genes and the changes in the biochemical indicators evidenced that drainage of sewage effluents from the ethyl alcohol company is a serious threat to the health of aquatic animals in the Khorram-Rood River. These results will contribute to further study on the impact of sewage effluents of the alcohol industry on aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.126609DOI Listing

Publication Analysis

Top Keywords

zebrafish danio
8
danio rerio
8
ethyl alcohol
8
alcohol industry
8
sewage exposure
8
genotoxicity oxidative
4
oxidative damage
4
damage zebrafish
4
rerio exposure
4
exposure effluent
4

Similar Publications

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Comparative ovarian morphophysiology of rats and Zebrafish after exposure to nandrolone decanoate.

Anim Reprod

January 2025

Programa de Pós-graduação em Biotecnologia - PPGBiotec, Universidade Federal do Delta do Parnaíba - UFDPar, Parnaíba, PI, Brasil.

This study aimed to compare the effects of nandrolone decanoate on the morphology and physiology of ovarian tissues in two experimental models, Zebrafish and rats, after in vitro cultivation. A total of 136 animals were used ( rats, n=36, and Zebrafish, n=100). In both experiments, the animals were divided into two groups (Control and Deca) and were exposed to nandrolone decanoate for seven weeks.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!