In this study, different numbers of baffles were arranged in settling zone of an activated primary sedimentation tank (APST) to adjust the flow regime of sewage, and the characteristics of flow regime adjustment enhancing carbon source recovery in the APST were explored. The results showed that, compared with the APST without baffles, setting one baffle at the front end of settling zone led to the lowest sedimentation loss of soluble chemical oxygen in the settling zone, and the SCOD and volatile fatty acid concentrations in the effluent increased by 52 mg/L and 4.49 mg/L, respectively, furthermore, the SCOD/total nitrogen (TN), and SCOD/total phosphorus (TP) in the effluent also increased by 22.47%, and 11.95%, respectively. To evaluate the mechanism of setting baffles for carbon source recovery, the numerical simulation of flow regime adjustment was utilized. The results showed that, under the condition of setting one baffle, three large recirculation zones were formed which increased the probability of collision and friction between particulates to avoid the dissolved carbon that had been desorbed in the mechanical agitation zone from being re-adsorbed and settling in the settling zone. Moreover, the baffle changed the streamlines of sewage, thereby resuspending more small carbon sources that had already settled and increasing the carbon source content of effluent. Thus, this study provided a new method of adjusting sewage flow regime in APST for enhancing the efficiency of carbon source recovery which could help improving biological nitrogen and phosphorus removal in wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126405 | DOI Listing |
Dokl Biochem Biophys
January 2025
Bakulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia.
The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.
View Article and Find Full Text PDFSci Rep
January 2025
Shanxi Provincial Geological Prospecting Bureau, Taiyuan, 030001, China.
In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.
View Article and Find Full Text PDFLangmuir
January 2025
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 61801.
Bacteria engage in surface-specific behaviors that are assumed to be driven by biological signaling. However, surface behaviors could be controlled by mechanical reorientation of bacterial appendages. Here, we use microfluidics and flagellar labeling to discover how shear force bends flagella to control surface behavior of the human pathogen .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!