This study is among the first to systematically study the electrochemical reduction of nitrate on boron-doped diamond (BDD) films with different surface terminations and boron-doping levels. The highest nitrate reduction efficiency was 48% and the highest selectivity in the production of nitrogen gas was 44.5%, which were achieved using a BDD electrode with a hydrogen-terminated surface and a B/C ratio of 1.0%. C-H bonds served as the anchor points for attracting NO anions close to the electrode surface, and thus accelerating the formation of NO. Compared to oxygen termination, hydrogen-terminated BDD exhibited higher electrochemical reactivity for reducing nitrate, resulting from the formation of shallow acceptor states and small interfacial band bending. The hydrophobicity of the hydrogen-terminated BDD inhibited water electrolysis and the subsequent adsorption of atomic hydrogen, leading to increased selectivity in the production of nitrogen gas. A BDD electrode with a boron-doping level of 1.0% increased the density of acceptor states, thereby enhancing the conductivity and promoting the formation of C-H bonds after the cathodic reduction pretreatment leading to the direct reduction of nitrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126364 | DOI Listing |
J Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China. Electronic address:
Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.
View Article and Find Full Text PDFMicroorganisms
December 2024
Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
In the greenhouse of the Chinese Academy of Sciences located on Huaizhong Road in Shijiazhuang City, Hebei Province, five fertilization treatment levels were established. These consisted of no fertilization (CK), conventional chemical fertilizer (with 100% chemical fertilizer application), and biogas slurry substitution treatments for chemical fertilizers (replacing 30%, 60%, and 100% of the chemical fertilizer nitrogen with biogas slurry nitrogen). Soil nutrient determination methods and high-throughput sequencing were employed to elucidate the correlative relationship between soil nutrients and microbial community metabolism.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Physics Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, 1st Colombo St., Karangmalang, Sleman, Yogyakarta 55281, Indonesia.
The aim of this study was to develop an electrolysis system to produce silver nanoparticles free from toxic gases, as the most common reduction and electrolysis techniques produce nitrogen dioxide (NO) as a byproduct, which is harmful to human health. The new electrolysis system used two identical silver plate electrodes, replacing silver and carbon rods, and used water as the electrolyte instead of silver nitrate (AgNO) solution since AgNO is the source of NO. The electrolytic silver nanoparticles (ESNs) produced by the new system were characterized and compared with reductive silver nanoparticles (RSNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!