Nowadays, it is well known that early diagnosis directly affects the success of treatment. Biomarkers play a crucial role in early diagnosis of diseases or explanation of pathological condition. The investigation of new biomarkers depends on the reliable quantification of analytes in biological matrices. Regarding to the critical roles of amino acids in metabolism, functions and nutrition of human body, the careful monitoring of their levels in biological samples is required to evaluate their potential in biomarker studies for clinical research. In this study, a reliable and accurate analytical strategy was developed for the simultaneous determination of glycine, methionine and homocysteine using LC-quadrupole-time of flight-tandem MS system. The method detection limit was found to be 0.73 μg/mL, 0.017 μg/mL and 0.019 μg/mL for glycine, methionine and homocysteine, respectively. The calibration curves were obtained with great linearity (R ≥ 0.9993) and low relative standard deviation values showed the repeatability of proposed method. The method applicability was determined using human plasma and urine samples, and high percent recoveries demonstrated the accuracy of method developed. Each measurement was taken less than 4.0 min indicating a promising strategy for the fast and reliable quantification of target amino acids in clinical laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.118394DOI Listing

Publication Analysis

Top Keywords

glycine methionine
12
methionine homocysteine
12
simultaneous determination
8
determination glycine
8
biological matrices
8
early diagnosis
8
reliable quantification
8
amino acids
8
method
5
accurate sensitive
4

Similar Publications

: We aimed to identify neonatal circulating metabolic alterations associated with maternal gestational diabetes mellitus (GDM) and to explore whether these altered metabolites could mediate the association of GDM with offspring neurodevelopment. Additionally, we investigated whether neonatal circulating metabolites could improve the prediction of offspring neurodevelopmental disorders over traditional risk factors. : The retrospective cohort study enrolled 1228 mother-child dyads in South China.

View Article and Find Full Text PDF

Cellular Signaling of Amino Acid Metabolism in Prostate Cancer.

Int J Mol Sci

January 2025

School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China.

Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer.

View Article and Find Full Text PDF

Background: X-linked hypophosphatemia (XLH) is a rare disorder characterized by elevated levels of fibroblast growth factor 23 (FGF-23), leading to hypophosphatemia and complications in diagnosis due to its clinical heterogeneity. Metabolomic analysis, which examines metabolites as the final products of cellular processes, is a powerful tool for identifying in vivo biochemical changes, serving as biomarkers of pathological abnormalities, and revealing previously uncharted metabolic pathways.

Methods: A multicenter cross-sectional case-control study of adult patients diagnosed with XLH was conducted.

View Article and Find Full Text PDF

Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!