A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. | LitMetric

Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections.

J Microbiol Methods

Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. Electronic address:

Published: July 2020

Surgical site infection arising from microbial contamination of surgical wounds is a major cause of surgical complications and prolong hospital stay. In this study, silver nanoparticles (AgNPs) biosynthesized using Eucalyptus camaldulensis extract were deposited on silk surgical sutures by ex situ method. Adherence of AgNPs to the surface of sutures was observed, with significantly reduced surface roughness (323.7 ± 16.64 nm), compared with uncoated sutures (469.3 ± 7.31 nm) (P < .001). Elasticity of AgNPs-coated (13 ± 1.485%) and uncoated (8 ± 0.728%) sutures was also significantly different (P < .05). Quantification of AgNPs demonstrated release of 3.88, 5.33, 5.44, 6.14% on day 1, 3, 5, 7, respectively from total Ag concentration (6.14 ± 0.14 μg/mL). The coated sutures produced a strong bacteriostatic effect on Staphylococcus aureus, an important wound pathogen with approximately 99% reduction in growth. In contrast, bactericidal effects were observed with Gram-negative pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Cytocompatibility tested on human keratinocyte cells exhibited approximately 80% cell viability. The coated sutures revealed stable antibacterial properties up to 12 weeks. This work suggested the potency of AgNPs-coated sutures as a suitable biocompatible medical device for the management of surgical site infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2020.105955DOI Listing

Publication Analysis

Top Keywords

silk surgical
8
surgical sutures
8
sutures situ
8
silver nanoparticles
8
eucalyptus camaldulensis
8
surgical
5
antibacterial-coated silk
4
sutures
4
situ deposition
4
deposition silver
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!