Germline variation in PTEN results in variable clinical presentations, including benign and malignant neoplasia and neurodevelopmental disorders. Despite decades of research, it remains unclear how the PTEN genotype is related to clinical outcomes. In this study, we combined two recent deep mutational scanning (DMS) datasets probing the effects of single amino acid variation on enzyme activity and steady-state cellular abundance with a large, well-curated clinical cohort of PTEN-variant carriers. We sought to connect variant-specific molecular phenotypes to the clinical outcomes of individuals with PTEN variants. We found that DMS data partially explain quantitative clinical traits, including head circumference and Cleveland Clinic (CC) score, which is a semiquantitative surrogate of disease burden. We built logistic regression models that use DMS and CADD scores to separate clinical PTEN variation from gnomAD control-only variation with high accuracy. By using a survival-like analysis, we identified molecular phenotype groups with differential risk of early cancer onset as well as lifetime risk of cancer. Finally, we identified classes of DMS-defined variants with significantly different risk levels for classical hamartoma-related features (odds ratio [OR] range of 4.1-102.9). In stark contrast, the risk for developing autism or developmental delay does not significantly change across variant classes (OR range of 5.4-12.4). Together, these findings highlight the potential impact of combining DMS datasets with rich clinical data and provide new insights that might guide personalized clinical decisions for PTEN-variant carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273526 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2020.04.014 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China.
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!