Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the oriented nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching points can evolve to a Hopf link. We extend our theory to 3D non-Hermitian multiband exceptional line semimetals. Our work provides a recipe to understand the transition of the knot topology for protected nodal lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.186402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!