The magnetic field effect (MFE) in exciplex emission (ExE) has been studied for decades, but it has been observed to occur only in solvents with a limited range of polarity. This limitation is mainly due to the reversible interconversion collapse between two quenching products of the photoinduced electron transfer, the exciplex and magnetic field-sensitive radical ion pair (RIP) beyond that polarity range. In a nonpolar solvent, the formation of RIPs is suppressed, whereas in a polar solvent, the probability of their re-encounter forming the exciplexes decreases. In this study, we developed new exciplex-forming (phenyl-enanthrene)-(phenyl-,-imethylaniline)-eptoid onjugates (PhD-PCs) to overcome this limitation. The well-defined peptoid structure allows precise control of the distance and the relative orientation between two conjugated moieties. Steady-state and time-resolved spectroscopic data indicate that the PhD-PCs can maintain the reversibility, which allows MFEs in ExE regardless of the solvent polarity. Subtle differences between the ExEs of the PhD-PCs were observed and explained by their exciplex geometries obtained through time-dependent density functional theory (TD-DFT) calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00636 | DOI Listing |
Parasit Vectors
August 2024
Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
Background: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally.
View Article and Find Full Text PDFMicromachines (Basel)
June 2024
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA.
This study focuses on the development and compressive characteristics of magnetorheological elastomeric foam (MREF) as an adaptive cushioning material designed to protect payloads from a broader spectrum of impact loads. The MREF exhibits softness and flexibility under light compressive loads and low strains, yet it becomes rigid in response to higher impact loads and elevated strains. The synthesis of MREF involved suspending micron-sized carbonyl Fe particles in an uncured silicone elastomeric foam.
View Article and Find Full Text PDFJ Nanobiotechnology
June 2024
Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes.
View Article and Find Full Text PDFInt J Pharm
June 2024
Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey. Electronic address:
Multifunctional nanoplatforms developed from natural polymers and graphene oxide (GO) with enhanced biological/physicochemical features have recently attracted attention in the biomedical field. Herein, a new multifunctional near-infrared (NIR) light-, pH- and magnetic field-sensitive hybrid nanoplatform (mGO@AL-g-PHPM@ICG/EP) is developed by combining iron oxide decorated graphene oxide nanosheets (mGO) and poly(2-hydroxypropylmethacrylamide) grafted alginate (AL-g-PHPM) copolymer loaded with indocyanine green (ICG) and etoposide (EP) for chemo/phototherapy. The functional groups, specific crystal structure, size, morphology, and thermal stability of the nanoplatform were fully characterized by XRD, UV, FTIR, AFM/TEM/FE-SEM, VSM, DSC/TG, and BET analyses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Department of Physics, Nagoya University, Nagoya 464-8602, Japan.
In kagome metals, the chiral current order parameter [Formula: see text] with time-reversal-symmetry-breaking is the source of various exotic electronic states, while the method of controlling the current order and its interplay with the star-of-David bond order [Formula: see text] are still unsolved. Here, we reveal that tiny uniform orbital magnetization [Formula: see text] is induced by the chiral current order, and its magnitude is prominently enlarged under the presence of the bond order. Importantly, we derive the magnetic-field ([Formula: see text])-induced Ginzburg-Landau (GL) free energy expression [Formula: see text], which enables us to elucidate the field-induced current-bond phase transitions in kagome metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!