A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Molecular Spin-Photon Coupling at Superconducting Nanoconstrictions. | LitMetric

We combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to 1.4 GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field. Drops of free-radical molecules have been deposited from solution onto the circuits. For the smallest ones, the molecules were delivered at the relevant circuit areas by means of an atomic force microscope. The number of spins effectively coupled to each device was accurately determined combining Scanning Electron and Atomic Force Microscopies. The collective spin-photon coupling constant has been determined for samples with ranging between 2 × 10 and 10 spins, and for temperatures down to 44 mK. The results show the well-known collective enhancement of the coupling proportional to the square root of . The average coupling of individual spins is enhanced by more than 4 orders of magnitude (from 4 mHz up to above 180 Hz), when the transmission line width is reduced from 400 μm down to 42 nm, and reaches maximum values near 1 kHz for molecules located on the smallest nanoconstrictions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c03167DOI Listing

Publication Analysis

Top Keywords

spin-photon coupling
8
atomic force
8
coupling
5
enhanced molecular
4
molecular spin-photon
4
coupling superconducting
4
superconducting nanoconstrictions
4
nanoconstrictions combine
4
combine top-down
4
top-down bottom-up
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!