Branched polyolefin microstructures resulting from so-called "chain walking" are a fascinating feature of late transition metal catalysts; however, to date it has not been demonstrated how desirable branched polyolefin microstructures can be generated thereby. We demonstrate how highly branched polyethylenes with methyl branches (220 Me/1000 C) exclusively and very high molecular weights (ca. 10 g mol ), reaching the branch density and microstructure of commercial ethylene-propylene elastomers, can be generated from ethylene alone. At the same time, polar groups on the main chain can be generated by in-chain incorporation of methyl acrylate. Key to this strategy is a novel rigid environment in an α-diimine Pd catalyst with a steric constraint that allows for excessive chain walking and branching, but restricts branch formation to methyl branches, hinders chain transfer to afford a living polymerization, and inverts the regioselectivity of acrylate insertion to a 1,2-mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496749 | PMC |
http://dx.doi.org/10.1002/anie.202004763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!