The first planar π-extended azulene that retains aromaticity of odd-membered rings was synthesized by [3+3] peri-annulation of two naphthalene imides at both long-edge sides of azulene. Using bromination and subsequent nucleophilic substitution by methoxide and morpholine, selective functionalization of the π-extended azulene was achieved. Whilst these new azulenes can be regarded as isomers of terrylene bisimide they exhibit entirely different properties, which include very narrow optical and electrochemical gaps. DFT, TD-DFT, as well as nucleus-independent chemical shift calculations were applied to explain the structural and functional properties of these new π scaffolds. Furthermore, X-ray crystallography confirmed the planarity of the reported π-scaffolds and aromaticity of their azulene moiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540366 | PMC |
http://dx.doi.org/10.1002/anie.202005376 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
University of Copenhagen, Department of Chemistry, Universitetsparken 5, DK-2100, Copenhagen, DENMARK.
The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.
View Article and Find Full Text PDFChem Sci
December 2024
Center for Bioanalytical Chemistry, University of Science and Technology of China Hefei 230026 China
Molecule-electrode interactions are critical for determining transport mechanisms and device functionalities in both single-molecule electrochemistry and electronics. Crucial factors such as anchoring groups and local fields have been studied, but the role of electrolytes and interfacial charge distribution remains largely underexplored. The present research focuses on how the interfacial charge distribution in the electric double layer (EDL) controls single-molecule junctions anchored by azulene.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Manipal Centre for Natural Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
The magnetic nature of nonalternant hydrocarbon (Azulene) bridged nitronyl nitroxide (AzNN) and imino-nitroxide (AzIN) diradicals are investigated with 38 different DFT functionals to find out a correct functional to predict the magnetic nature of these diradicals. The effect of Hartree-Fock exchange (HFX) in the hybrid functionals are investigated for the prediction of magnetic nature of the nonalternant hydrocarbon bridged diradicals. The utility of Borden and Davidson's proposal of disjoint and nondisjoint SOMOs for the prediction of magnetic nature of alternant hydrocarbon bridged diradicals is assessed for the nonalternant hydrocarbon based diradicals.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
INSTM, via G. Giusti 9, 50121 Firenze, Italy.
The structural and spectroscopic properties in the gas phase of azulene and some of its N-bearing derivatives have been analyzed by a general computational strategy based on the recent Pisa composite schemes (PCSs). First of all, an accurate semiexperimental equilibrium structure has been derived for azulene and employed to validate the geometrical parameters delivered by different quantum chemical methods. Next, different isomerization energies (azulene to naphthalene, 1-aza-azulene to quinoline and to other isomers) have been computed by an explicitly correlated PCS version employing frozen natural orbitals.
View Article and Find Full Text PDFAnal Chem
December 2024
Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!