While an initial clinical absorption, distribution, metabolism, and excretion (ADME) study (Study 1; N = 6) with 100 mg/100 µCi [ C]lorlatinib, radiolabeled on the carbonyl carbon, confirmed that the primary metabolic pathways for lorlatinib are oxidation (N-demethylation, N-oxidation) and N-glucuronidation, it also revealed an unanticipated, intramolecular cleavage metabolic pathway of lorlatinib, yielding a major circulating benzoic acid metabolite (M8), and an unlabeled pyrido-pyrazole substructure. Concerns regarding the fate of unknown metabolites associated with this intramolecular cleavage pathway led to conduct of a second ADME study (Study 2; N = 6) of identical design but with the radiolabel positioned on the pyrazole ring. Results were similar with respect to the overall mass balance, lorlatinib plasma exposures, and metabolic profiles in excreta for the metabolites that retained the radiolabel in both studies. Differences were observed in plasma total radioactivity exposures (2-fold area under the plasma concentration-time curve from time 0 to infinity difference) and relative ratios of the percentage of dose recovered in urine vs feces (48% vs 41% in Study 1; 28% vs 64% in Study 2). In addition, an approximately 3-fold difference in the mean molar exposure ratio of M8 to lorlatinib was observed for values derived from metabolic profiling data relative to those derived from specific bioanalytical methods (0.5 vs 1.4 for Studies 1 and 2, respectively). These interstudy differences were attributed to a combination of factors, including alteration of radiolabel position, orthogonal analytical methodologies, and intersubject variability, and illustrate that results from clinical ADME studies are not unambiguous and should be interpreted within the context of the specific study design considerations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcph.1621DOI Listing

Publication Analysis

Top Keywords

metabolism excretion
8
radiolabel position
8
adme studies
8
adme study
8
study study
8
intramolecular cleavage
8
study
7
lorlatinib
5
excretion pharmacokinetics
4
pharmacokinetics lorlatinib
4

Similar Publications

Citrate in autosomal dominant polycystic kidney disease: biomarker or therapeutic agent?

Curr Opin Nephrol Hypertens

March 2025

Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.

Purpose Of Review: This review highlights the latest findings regarding hypocitraturia in autosomal dominant polycystic kidney disease (ADPKD), from both experimental and clinical studies, exploring the underlying pathophysiology and potential therapeutic approach.

Recent Findings: Experimental studies have shown that the lodging of microcrystals in the tubules can trigger cyst formation and growth in polycystic kidney disease (PKD). ADPKD patients are prone to developing hypocitraturia in early stages, which could predispose to calcium microcrystal formation.

View Article and Find Full Text PDF

Optimal timing for lithium levels.

F1000Res

January 2025

Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.

Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently.

View Article and Find Full Text PDF

Administration Studies in Equine Antidoping Research: Designing Scientific Investigations to Effectively Direct Medication Control in Racehorses.

Drug Test Anal

January 2025

KL Maddy Equine Analytical Chemistry Lab (Pharmacology Section), School of Veterinary Medicine, University of California, Davis, California, USA.

Pharmacokinetics is the study of the movement of drug in the body and includes the processes of absorption, distribution, metabolism, and excretion. Pharmacodynamics is the pharmacologic effect of the drug on the body. The pharmacokinetics of a drug determines its pharmacologic effect.

View Article and Find Full Text PDF

Primary hyperparathyroidism (pHPT) is marked by mineral imbalances, often leading to nephrolithiasis and osteoporosis. While imaging remains the cornerstone for stone detection, there is growing interest in biochemical markers that could enhance diagnostic accuracy. This study investigates the calcium-to-magnesium (Ca/Mg) ratio as a novel biomarker for nephrolithiasis, comparing its utility to traditional 24-h urinary calcium excretion and exploring its broader clinical implications.

View Article and Find Full Text PDF

Gut microbiota as a new target for hyperuricemia: A perspective from natural plant products.

Phytomedicine

January 2025

National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China. Electronic address:

Background: Hyperuricemia, a prevalent chronic metabolic disorder caused by purine metabolism disturbances, is characterized by elevated serum uric acid (UA) levels. Prolonged hyperuricemia can cause severe complications such as gout or kidney damage. However, the toxic side effects of and adverse reactions to UA-lowering drugs are becoming increasingly prominent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!