Cyclic adenosine monophosphate (cAMP) is a second messenger involved in the dental regeneration. However, efficient long-lasting delivery of cAMP that is sufficient to mimic the in vivo microenvironment remains a major challenge. Here, cAMP was loaded in stem cells from apical papilla (SCAPs) using layer-by-layer self-assembly with gelatin and alginate polyelectrolytes (LBL-cAMP-SCAPs). LBL-cAMP-SCAPs expressed cAMP and increased the phosphorylation level of cAMP-response element-binding protein (CREB) which were evaluated by immunofluorescence and western blotting (WB). Enzyme-linked immunosorbent assay (ELISA) demonstrated that a sustained release of cAMP and vascular endothelial growth factor (VEGF) were present up to 14 days. Scanning electron microscopy (SEM) found LBL-coated SCAPs exhibited a spheroid-like morphology. CCK8 and live/dead staining showed that LBL treatment had no significant effect on cell proliferation and viability. LBL-cAMP-SCAPs enhanced mineralized nodule formation and up-regulated the mRNA levels of the osteogenesis-related genes, as well as related transcription factor-2 protein level which were revealed by Alizarin red staining, RT-PCR and WB, respectively. In conclusion, LBL self-assembly loaded with cAMP promoted the osteo/odontogenic differentiation of SCAPs, thereby providing a potential strategy for bioactive molecular delivery in dental regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37017 | DOI Listing |
Carbohydr Polym
March 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:
The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Molecularly imprinted polymers (MIPs) are typically synthesized in organic solvents, leading to poor compatibility with water, weak affinity and selectivity for target molecules in aqueous media. To address these challenges, a green and sustainable synthesis of sandwich bread-like ATP@MIP was conducted using polyethylenimide (PEI) and deep eutectic solvent (DES) as hydrophilic bi-functional monomers via layer-by-layer self-assembly on the attapulgite (ATP) carrier. The new ATP@MIP can provide a higher density of imprinting sites with more orderly and uniform distribution due to inhibiting the competitive polymerization between PEI and DES, thereby significantly enhancing recognition ability.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China. Electronic address:
MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:
Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!