Background: Tumor-infiltrating lymphocytes (TILs) are B, T-helper, and T-cytotoxic lymphocytes migrated from the blood or lymph stream toward a tumor with the aim to infiltrate and destroy it. They can be histologically graded as brisk, nonbrisk, or absent. Malignant melanoma has been the first malignancy found to be correlated with TILs status, being brisk TILs associated with better clinical outcomes. By the terminology of "adoptive cell transfer" (ACT), the medical oncology refers to the transfer of cells in a tumor-bearing patient from the same recipient or a healthy donor.
Methods: A PubMed literature search on the topic has been performed. Additional documents known to the authors and identified from the reference list of cited publications have been included.
Results: In the past, autologous TILs ACT was successfully tested for the treatment of malignant melanoma and, today, it is a standardized procedure in several centers around the world. It represents the first research step toward the bioengineered chimeric antigen receptor T (CAR-T) cell therapy from autologous donor.
Conclusions: Both autologous TILs ACT and CAR-T cell therapy from autologous donor exploit the anticancer power of targeted self-lymphocytes, but CAR-T cell technology also virtually allows treatment of those melanomas devoid of TILs or with so few cytotoxic TILs that are difficult to identify.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ijd.14945 | DOI Listing |
Sci Bull (Beijing)
December 2024
Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Life Sci
December 2024
Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain. Electronic address:
Aims: CAR-T cell therapy has attracted considerable attention in recent years owing to its well-known efficacy against haematopoietic malignancies. Nevertheless, this immunotherapy fails against solid tumours due to hostile conditions found in the tumour microenvironment. In this context, many relevant biochemical factors have been thoroughly studied, but crucial mechanical cues have been underestimated.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy.
Neuroblastoma (NB) is the most common extracranial solid tumor in children, with variable outcomes ranging from spontaneous remission to high-risk cases often leading to relapse or refractory disease. Approximately 50% of patients with NB have high-risk features, often experiencing relapse or refractory disease despite intensive treatments and the prognosis remains poor, with long-term event-free survival (EFS) rates below 10%,Radioactive iodine-labeled meta-iodobenzylguanidine (¹³¹I-mIBG) therapy, leveraging NB cells' radiosensitivity and expression of the norepinephrine transporter (NET), has shown promise in treating relapsed or refractory NB. Since 1985, ¹³¹I-mIBG has been studied to determine the maximum tolerated dose and side effects, with recent trials exploring its use in front-line treatment.
View Article and Find Full Text PDFInt J Colorectal Dis
December 2024
Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
Purpose: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges.
View Article and Find Full Text PDFCell Prolif
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!