A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of stressors in the aviation environment on xenobiotic dosimetry in humans: physiologically based prediction of the effect of +Gz-forces. | LitMetric

Impact of stressors in the aviation environment on xenobiotic dosimetry in humans: physiologically based prediction of the effect of +Gz-forces.

J Toxicol Environ Health A

UES, Inc., Beavercreek, OH, Assigned to U.S. Air Force Research Laboratory, 711 Human Performance Wing, Wright Patterson Air Force Base , Dayton, OH, USA.

Published: May 2020

The application of physiologically based modeling approaches in evaluating health risks in diverse environments is limited by scarcity of comprehensive reviews detailing how physiological parameters are altered due to stressors. A modern high-performance aviation environment in particular has the potential for simultaneous exposure to chemical and non-chemical stressors which may interact via non-chemical stressor-mediated pharmacokinetic alterations. To support physiologically based pharmacokinetic (PBPK) modeling of in-flight disposition inhaled chemicals, literature review, and synthesis was conducted to determine the impact of gravitational (+Gz) forces on PBPK modeling inputs. Specifically, changes in cardiac output and related parameters heart rate and stroke volume, breathing frequency, tidal volume, and pulmonary and alveolar ventilation rate were extracted from 36 publications and related mathematically to +Gz intensity. A scenario was simulated where a pilot performing test flights might inhale organic chemicals at the occupational exposure guideline level while experiencing sustained, elevated +Gz. Peak arterial blood concentrations of 1,2,4-trimethylbenzene during a 1 h-flight at +4 Gz were predicted to increase 2-fold relative to would occur on the ground under baseline conditions. This case study demonstrates the potential value of scenario-specific physiological information in assessing changes in risk-relevant internal dosimetry, providing better information for potential risk management actions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2020.1767249DOI Listing

Publication Analysis

Top Keywords

physiologically based
12
aviation environment
8
pbpk modeling
8
impact stressors
4
stressors aviation
4
environment xenobiotic
4
xenobiotic dosimetry
4
dosimetry humans
4
humans physiologically
4
based prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!