Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accelerometer devices are becoming efficient tools in clinical studies for automatically measuring the activities of daily living. Such data provides a time series describing activity level at every second and displays a subject's activity pattern throughout a day. However, the analysis of such data is very challenging due to the large number of observations produced each second and the variability among subjects. The purpose of this study is to develop efficient statistical analysis techniques for predicting the recovery level of the upper limb function after stroke based on the free-living accelerometer data. We propose to use a Gaussian Mixture Model (GMM)-based method for clustering and extracting new features to capture the information contained in the raw data. A nonlinear mixed effects model with Gaussian Process prior for the random effects is developed as the predictive model for evaluating the recovery level of the upper limb function. Results of applying to the accelerometer data for patients after stroke are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0962280220922259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!