A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leveraging spatial uncertainty for online error compensation in EMT. | LitMetric

Purpose: Electromagnetic tracking (EMT) can potentially complement fluoroscopic navigation, reducing radiation exposure in a hybrid setting. Due to the susceptibility to external distortions, systematic error in EMT needs to be compensated algorithmically. Compensation algorithms for EMT in guidewire procedures are only practical in an online setting.

Methods: We collect positional data and train a symmetric artificial neural network (ANN) architecture for compensating navigation error. The results are evaluated in both online and offline scenarios and are compared to polynomial fits. We assess spatial uncertainty of the compensation proposed by the ANN. Simulations based on real data show how this uncertainty measure can be utilized to improve accuracy and limit radiation exposure in hybrid navigation.

Results: ANNs compensate unseen distortions by more than 70%, outperforming polynomial regression. Working on known distortions, ANNs outperform polynomials as well. We empirically demonstrate a linear relationship between tracking accuracy and model uncertainty. The effectiveness of hybrid tracking is shown in a simulation experiment.

Conclusion: ANNs are suitable for EMT error compensation and can generalize across unseen distortions. Model uncertainty needs to be assessed when spatial error compensation algorithms are developed, so that training data collection can be optimized. Finally, we find that error compensation in EMT reduces the need for X-ray images in hybrid navigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303086PMC
http://dx.doi.org/10.1007/s11548-020-02189-wDOI Listing

Publication Analysis

Top Keywords

error compensation
16
spatial uncertainty
8
compensation emt
8
radiation exposure
8
exposure hybrid
8
compensation algorithms
8
unseen distortions
8
model uncertainty
8
error
6
compensation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!